

MAV SIMULATION IN SCILAB FOR HARDWARE-IN-LOOP

TESTING

AE 497 B.Tech. Project Stage II

By

Saurav Agarwal

06001011

Under the guidance of

Dr. Hemendra Arya

Department of Aerospace Engineering,

Indian Institute of Technology, Bombay

November, 2009

Declaration of Academic Integrity

I declare that this report represents my ideas in my own words and where others' ideas or

words have been included, I have adequately cited and referenced the original sources. I also

declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea / data / fact / source in my report. I

understand that any violation of the above will be cause for disciplinary action as per the

rules and regulations of the institute.

Saurav Agarwal

(06001011)

Certificate

Certified that this B.Tech. Project titled “MAV Simulation in Scilab for Haridware-in-Loop

Testing” by “Saurav Agarwal” is approved by me for submission. Certified further that, to the

best of my knowledge, the report represents work carried out by the student.

Date: Signature and Name of Guide

Abstract

Building a Micro Aerial Vehicle (MAV) requires the testing of embedded systems before the

aircraft can be flown in the real environment. Thus, simulators are implemented to help in

design and testing of navigation, guidance and control laws, design and development of

various interfaces e.g. GPS interface, filters etc. and identifying faults in the system. After

evaluating the feasibility of EtherCAT, RTAI-Lab tool chain and a Comedi Toolbox called

Scicos-Comedi based solutions, it was decided to go ahead with Scicos-Comedi. This project

deals with the design of an HIL system using Scilab/Scicos as the primary software for the

graphical design of the control structure. The Comedi toolkit, a software tool which provides

Scicos blocks for real time DAQ applications is used as an add-on library for Scicos. A linux

based system patched with RTAI kernel and comedi drivers for real time interfacing is used.

Table of Contents

1. Introduction...1

1.1 Methodologies evaluated..1

1.1.1 The RTAI-Lab tool chain..1

1.1.2 EtherLab..2

1.1.3Scicos-Comedi..3

1.2 Why the Scicos-Comedi toolbox..3

 1.3 Simulation methodology...3

 2. The Softwares...5

 2.1 Scicos...5

2.1.1 Scicos features...5

 2.2 Comedi..6

 2.3 RTAI..6

 2.3.1 How RTAI works...8

 3. Scicos Block Diagram and Setup..10

 3.1 Control loop structure in Scicos...10

 3.1.1 Diagram components..12

 3.2 Hardware Setup...12

4. Errors in Previous Simulations...14

4.1 Aileron pulse input..14

5. Realtime Testing..17

 5.1 Observations..19

6. Conclusions..20

 6.1 Advantages of Scicos-Comedi..20

6.2 Disadvantages of Scicos-Comedi..20

6.3 Future applications..21

List of Figures

2.1 Comedi Palette...10

3.1 Scicos control loop structure..10

3.2 Memory hold superblock..10

3.3 Interfacing board...10

3.2 Autopilot Board..10

4.1Total Velocity vs. Time...14

4.2 Altitude vs. Time..15

4.3 p vs. Time...15

4.4 q vs. Time...16

4.5 r vs. Time..16

5.1 Dynamic Pressure vs. Time (from scilab) ...17

5.2 Dynamic Pressure vs. Time (from scope) ...18

5.3 Static Pressure vs. Time (from scilab)..18

5.4 Static Pressure vs. Time (from scope)..19

Nomenclature

MAV Micro Aerial Vehicle

UAV Unmanned Aerial Vehicle

GPS Global Positioning System

DOF Degree of Freedom

HILS Hardware in Loop Simulation

CACSDS Computer Aided Control System Design Software

RTAI Real Time Application Interface

A/D Analog to Digital

D/A Digital to Analog

DAQ Data Acquisition

1

Chapter 1

Introduction

Desktop PC based simulation, which includes designing a mathematical model for a physical

system and executing it on a digital computer, has been the primary method for analyzing and

studying the behavior of dynamic systems. Software tools such as computer aided control

system design software (CACSDS) and programming tools are essential in the field of

control systems design, modeling, and simulation. Simulating events in a time frame in which

they would naturally occur is known as real-time simulation. The importance of timing

accuracy of these simulations strongly depends on the application but may be crucial in

ensuring intended system performance. The main objective of this project is to design an easy

to implement HIL test bed using GUI based tools.

Software tools supporting real-time environments are required to achieve the above

mentioned objective and to analyze its real world performance. Scilab/Scicos is one such tool

that provides mathematical programming and graphical modeling platform for designing and

simulating systems. An advantage of using Scicos is that makes the task of designing the

control flow very easy compared to writing a complicated C code for real time execution

since such a code requires extensive use of external dependencies (i.e. Comedi and RTAI

functions) making the code writing process tedious. A package called Scicos-Comedi adds a

palette of Comedi I/O devices to Scicos which provides a custom library of Scicos blocks.

This can be used for general Linux based real-time applications.

1.1 The methodologies evaluated

1.1.1 The RTAI-Lab tool chain [1]

The RTAI-Lab tool chain represents an alternative to the commercial software listed below:

 Scilab/Scicos Mathworks’ MatlabR /SimulinkR

 Comedi drivers supplied by signal acquisition hardware vendors, but most

vendors don’t supply Linux drivers

 RTAI LynxOSR from LynuxworksR , MontaVista LinuxR , QNXR,

VxWorksR , etc.

2

 RTAI-Lib Mathworks’ Real-Time WorkshopR

 xrtailab LabView

The RTAI-Lab tool-chain is based on:

 Scilab/Scicos. Scilab is an open source CACSD software for numerical computation.

Scilab includes Scicos, a block diagram editor that can be used to create simulations

and automatically generate and compile code.

 Comedi drivers Comedi provides the drivers, library functions, and an API to interact

with signal acquisition hardware. Hundreds of devices are supported.

 RTAI The Real-Time Application Interface (RTAI) is distributed as a package with a

patch to apply to the Linux kernel. RTAI inserts a sub-kernel where prioritized, hard

real-time tasks can run. FIFOs and shared memory can be used to transfer data

between real-time and user space processes.

 RTAI-Lib. RTAI-Lib is a palette of Scicos blocks that let you design block diagrams

with sensors and actuators. It provides an interface to RTAI and signal acquisition

hardware. Block diagrams that use RTAI-Lib can be compiled into RTAI execuatble

software. It is included in the RTAI package.

 xrtailab. xrtailab is an oscilloscope-like software that can connect to your real-time

executables. It lets you visually monitor signals and real-time events using gauge,

scope, and LED mock-ups. Xrtailab also lets you adjust parameters of the real-time

executable while it runs. It is also part of RTAI. This is not used since the GPS

position as well as IMU measurements are sent to a GUI which gives the real time

position of the a/c on a map as well as its orientation with respect to an artificial

horizon.

1.1.2 EtherLab [2]

The EtherLAB Scicos Toolbox is a HIL and Realtime Toolbox for data acquisition, data

logging und system controlling. It's functionality is related to the RTAILAB- and HART-

Toolbox. Many thanks for the inspiration. The signal IO (analog, digital, PT, Counter, SSI,

CAN, Profibus) is based on the EtherCAT Fieldbus (a decentral high perfomance bus based

on Ethernet frames). The toolbox uses a GPL and linux based fieldbus master driver. Other

IO-Subsystems are possible. Signal IO can be used during simulation like HIL-Comedi

blocks. The toolbox includes a Code generator for the Linux Userspace target. A preempt rt

3

kernel allows realtime cycle frequencies up to or greater 20kHz (depends on the hardware).

Datavisualisation and -logging is available after codegeneration.

1.1.3 Scicos-Comedi [3]

Scicos-Comedi provides a set of Scicos blocks which can be used for communicating with

DAQ devices using Comedi driver libraries. It is a form of ScicosHIL wherein it is possible

to use the GUI of Scicos to control the plant. It allows the implementation of scilab code

which is not available in the other two.

1.2 Why the Scicos-Comedi Toolbox

In the first stage of this project two solutions were proposed for setting up the simulator.

1. RTAI-Lab as an add-on package for Scilab/Scicos

2. EtherCAT interface using Etherlab as an add-on package for Scilab/Scicos

First, it was decided to try RTAI-Lab over the EtherCAT based solution primarily because of

zero cost of implementation of the required software, since all software used for RTAI-Lab

are free and Open Source and requires no extra hardware need. On the other hand, EtherCAT

requires proprietary I/0 interfacing boards to communicate with microcontrollers through the

Ethernet port of a PC. These boards are expensive and not freely available in India. RTAI-

Lab however presents the problem that it doesn’t allow the use scilab language for the

computational function

1.3 Simulation Methodology

The HIL simulator design takes advantage of the simple and easy to use Graphical

programmable block available in Scicos. Coupled with Scicos-Comedi, it provides powerful

customisable blocks which can be used to interface with external hardware using Comedi

drivers. A brief flow of the methodology:

1. Program the computational function in scilab which calculates the instantaneous

state of the aircraft based on previous state and control inputs.

2. Design the Scicos block Diagram with the required input and output blocks

available in Comedi palette.

4

3. Test the open loop realtime to match the output on CRO and output on screen.

4. Run HIL.

Aim of Report

The aim of this report is to describe the Scicos-Comedi tool chain GUI based Hardware in

Loop simulation technique implemented for MAV testing.

Report Layout

Chapter 2 deals in-depth with the software. Chapter 3 explains the Scicos structure and

methodology that has been implemented. Chapter 4 discusses the corrections made in the

code to correct the errors in stage 1. Chapter 5 deals with the testing in Realtime. Chapter 6

presents the conclusions.

5

Chapter 2

The Softwares

2.1 Scicos [3]

Scicos is a graphical dynamical system modeller and simulator developed in the Metalau

project at INRIA, Paris-Rocquencourt center. With Scicos, user can create block diagrams to

model and simulate the dynamics of hybrid dynamical systems and compile models into

executable code. Scicos is used for signal processing, systems control, queuing systems, and

to study physical and biological systems.

2.1.1 Scicos Features

1. GUI and graphics

 GUI to model dynamical systems as block diagrams

 Palettes of standard blocks One can:

 Modify existing open source blocks

 Program new blocks in C, Fortran (dynamic link), or Scilab

 Extend current palettes

 Animation block

 Interfaces to Tcl/Tk widgets to generate custom GUIs

2. Hierarchical structures

 Model components can be aggregated into Super Blocks to create a hierarchical block

diagram

 Converts independent Super Blocks into C code

3. Simulations

 Batch mode simulations from Scilab

http://www.inria.fr/
http://www.inria.fr/rocquencourt
http://www-rocq.inria.fr/scicos/palettes.html

6

 Powerful formalism to model hybrid systems, i.e., possibility to combine continuous

and discrete-time behaviors in the same model

 Choice of solvers:

o Ordinary Differential Equations (ODE) with SUNDIALS Solver CVODE.

o Differential Algebraic Equations (DAE) with SUNDIALS Solver IDA.

 "Implicit" blocks based on differential algebraic equations can be created and

processed by the DASKR solver

4. Compilation, debugging

 Compiles and runs simulations on block diagrams

 Performs partial recompilations to save time

 Interfaces with external programs and operating systems

 Adjustable debugging levels

 Breakpoint placement for debugging

5. Code generation

 Generates C code

 Generates real-time code for RTAI (using RTAI-Lab)

6.Interfaces

 Can be piloted from Scilab programs

 Data and state variables can easily be exchanged with external programs

 Interfaces to digital acquisition cards with Scicos-HIL (Linux and Windows) and

Scicos-RTAI (Linux RTAI)

 Can integrate Modelica objects, for example to model electrical and hydraulic circuits

2.2 Comedi [4]

Comedi is a free software project that develops drivers, tools, and libraries for various forms

of data acquisition: reading and writing of analog signals; reading and writing of digital

inputs/outputs; pulse and frequency counting; pulse generation; reading encoders; etc. The

http://www.rtai.org/
http://www.dti.supsi.ch/~bucher/rtai.html
http://www-rocq.inria.fr/scicos/scicoshil.html
http://www-rocq.inria.fr/scicos/scicosrtai.html
http://www.modelica.org/

7

project's source code is distributed in two packages, comedi and comedilib, and provides several

Linux kernel modules and a user space library:

 Comedi is a collection of drivers for a variety of common data acquisition plug-in

boards (which are called "devices" in Comedi terminology). The drivers are

implemented as the combination of (i) one single core Linux kernel module (called

"comedi") providing common functionality, and (ii) individual low-level driver

modules for each device.

 Comedilib is a separately distributed package containing a user-space library that

provides a developer-friendly interface to the Comedi devices. Included in the

Comedilib package are documentation, configuration and calibration utilities, and

demonstration programs.

 Kcomedilib is a Linux kernel module (distributed with the comedi package) that

provides the same interface as comedilib in kernel space, and suitable for real-time

tasks. It is effectively a "kernel library" for using Comedi from real-time tasks.

Comedi works with standard Linux kernels, but also with its real-time extensions RTAI and

RTLinux/GPL.

2.3 Real Time Application Interface [RTAI] [5]

The RTAI project began at the “Dipartimento di Ingegneria Aerospaziale del Politecnico di

Milano” (DIAPM) in 1996/97. It stemmed from the need of making available a tool to

support a varied set of internal research activities related to advanced active controls for

generic aeroservoelastic systems, including large space structures, acoustics and flexible

manipulators. Its aim was to make it possible their development, implementation and testing

on standard 32 bits personal computers (PC) and data acquisition cards, by using high level

language programming tools, so that anybody, including graduating students, could proceed

to their implementation with a relative ease in building it all.

Budget constraints and the satisfaction of some DIAPM researchers in using Linux as a

general purpose operating system brought the idea of adding hard real time capabilities to it.

RTAI is integrated into Linux through a text file containing a set of changes to its kernel

source code, known as a patch, and a series of add on programs expanding Linux to hard real

time. As such it is bound to be a GPLed licensed [3] FOSS, as Linux is. So RTAI has been

http://www.comedi.org/download.php
http://www.comedi.org/download.php
http://www.rtai.org/
http://www.rtlinux-gpl.org/

8

freely available on the net from its very beginning. In 1999, after the appearance of the 2.4.xx

release of Linux, RTAI began being relatively widely known and after some time it became

an FOSS development effort with a team of developers worldwide.

2.3.1 How RTAI works

RTAI expands Linux to hard real time, to that end RTAI patches the Linux kernel by

installing a generic Real Time Hardware Abstraction Layer (RTHAL). RTHAL performs

three primary functions:

a) Gathers all the pointers to the time critical kernel internal data and functions into a

single structure, to allow the easy trapping of all the kernel functionalities that are

important for real time applications, so that they can be dynamically substituted by

RTAI when hard real time is needed. Generally speaking such kernel functionalities

include all functions and data structures required to manipulate: the hard interrupt

flag, external interrupts and internal traps/faults, the system call, programmable

interrupt controllers and hard timers. The related objects are substituted by pointers

that can be changed dynamically.

b) Reworks the related Linux functions, data structures and macros to make it possible

to use them to initialize RTHAL pointers for normal Linux operations.

c) Changes Linux to use what pointed in RTHAL for its operation.

9

2.4 Scicos-Comedi Palette

This palette is the set of Comedi I/0 blocks available. These blocks can directly be copied

from the palette and used in the Scicos diagram.

Figure 2.1: The Comedi palette

1. Encoder In: Read the data from encoder

2. Analog Input: Reads data from specified channel in ADC device

3. Analog Out: Writes data to specified channel in DAC device

4. Digital Input: Reads data from specified channel in serial port

3. Digital Out: Writes data to specified channel in serial port

10

Chapter 3

Scicos Block Diagram and Setup

3.1 Control Loop Structure in Scicos

Figure 3.1: Scicos control loop structure

Figure 3.2: Memory hold superblock

1

2

3

4 5 6 7

12 13

8

10

9

11

11

3.1.1 Diagram Components

The diagram comprises of various blocks which are explained as follows:

1. Analog In [1] : This block reads voltage coming from aileron servo pot

2. Analog In [2] : This block reads voltage coming from throttle servo pot

3. Analog In [3] : This block reads voltage coming from elevator servo pot

4. Mux: This branching block takes in multiple inputs and combines them into 1 signal

as in a Multiplexer

5. Scifunc computational block

6. : This a computational block with the function coded in scilab language. It takes in the

previous state and control inputs and calculates the new state

7. Memory superblock: This block holds the value of the 12 parameters i.e x = [u v w p

q r ϕ θ ψ xe ye H]
T

and feeds them to loop when the clock triggers. It breaks the

algebraic loop which occurs, since without it the output of block 5 would be its input.

The memory superblock basically stores the starting value of the state and and all

subsequent values for that loop call.

8. Scifunc computational block: This block reads the state vector and maps the height

and total speed to static and pressure sensor voltages respectively using the formulae:

a. Static pressure voltage = -0.000327817 H + 4.13166784

b. Dynamic pressure voltage = -0.00076 (V - 3)
2
+ 0.0002V + 2.4

9. Analog Out: Writes the static pressure voltage to the DAC channel [0]

10. Analog Out: Writes the dynamic pressure voltage to the DAC channel [1]

11. Scope: This scope reads and displays the voltage being written to either of the analog

output channels

12. C block: This block converts the inertial measurements into hex code which is put in

an array

13. Digital Out: Writes the IMU data coming in hex form from the c block to the serial

port

12

3.2 Hardware Setup

The setup that was used for the HILS is as follows:

1. A linux based pc running Fedora Core 5 with kernel patched with RTAI

2. National Instruments DAQ cards:

a. Analog to Digital Input: National Instruments DAS1002

b. Digital to Analog Input: National Instruments DAC 08/16

 3. Interfacing board: Indigenously designed board to connect output from PC to

autopilot board

Figure 3.3: Interfacing board

 4. Autopilot Board: Takes the pressure sensor and IMU inputs from the pc and

generates the control command which is sent to the servos. The board contains

a microcontroller (MSC 7121) programmed with a particular mission such as

waypoint navigation, attitude holds etc.

13

Figure 3.4: Autopilot board

 5. Servos: There are 3 servo outputs from the autopilot i.e. Throttle, Elevator,

Aileron. These servos are tapped using a potentiometer to read the servo

deflection as voltage output and fed to the simulation through ADC input.

6. CRO: For testing the open loop HIL. It allows us to compare the output on the

CRO with that on the pc to see whether the simulation is giving output in

realtime to external devices.

3.3 Control Flow

Figure: Flow diagram of HIL

Scicos
(computational

functions)

1. Digital out: IMU signal 2.
DAC out: static and dynamic

pressure

Autpilot
(generate control

signal)

Servo Motors
(tapped)

ADC (throttle,aileron,
elevator)

14

Chapter 4

Errors in Previous Simulation Results

4.1 Aileron pulse Input

In the first stage the simulation results did not predict roll stability about the x axis. This error

was later attributed to an error in the code which has now been amended. Starting from trim

conditions, the aileron deflection was made +2 degree for 2 seconds at t = 5s and then

brought back to 0 at t = 7 s. We see that aircraft is disturbed but tends to return to zero.

Trim Conditions: dth=189, de = 1.2, alt = 992 m, theta = 0.097 rad

Shown here are the simulation results:

 Figure 4.1: Total Velocity vs. Time

15

Figure 4.2: Altitude vs. Time

Figure 4.3: p vs. Time

16

 Figure 4.4: q vs. Time

Figure 4.5: r vs. Time

17

Chapter 5

Realtime Testing

The simulator needed to be tested before being used for MAV simulations to verify its

working. This was done by connecting the output of the DAC channel i.e. pressure sensor

output to an oscilloscope. The simulation was then run and the output of the scope was

recorded on a graph. The same simulation was then run in scilab without I/O. The results

were then compared.

Figure 5.1: Dynamic Pressure (volts) vs. Time (s) (from scilab)

18

Figure 5.2: Dynamic Pressure (volts) vs. Time (s) (from scope)

Figure 5.3: Static Pressure (volts) vs. Time (s) (from scilab)

19

Figure 5.4: Static Pressure (volts) vs. Time (s) (from scope)

5.1 Observations

It is seen that the realtime open loops simulations and scilab simulation correspond. The

output on the scope in the pc goes hand in hand with the ouput on the CRO. This

demonstrates the ability of Scicos to conduct hardware in loop simulations in realtime. The

voltage ouput for the sensors corresponds to the value of the voltage generated in scilab

(using same mapping formulae). This verifies that the HIL works in accordance with our

requirements.

20

Chapter 6

Conclusions

During the course of this project a lot of issues were faced concerning compatibility of

software packages. Since the project depended on open-source development it was quite

often that packages would come without the requisite documentation or support. RTAI-Lab is

one such package. It offers a major handicap that its Codegen doesn’t work on scilab code.

This takes away the advantage of using scilab language since it offers a wide variety of

inbuilt computational functions such as interpolation which allows us to use non-linear

aerodynamic data. C language does not have such easily available 2d and 3d interpolation

functions in any standard library. However RTAI offers hard realtime capabilities which

allows us to carry out simulations with a time step of 1 microsecond. This is the major

advantage of using RTAI-Lab. Other methods such as Scicos-Comedi offer 99% realtime at

best.

6.1 Advantages of Scicos-Comedi

The Scicos-Comedi toolbox is an easy to implement palette of comedi I/0 blocks. The biggest

advantage it offers is that it can be implemented using the Scicos GUI and is compatible with

scilab computational functions. There is no need for a codegen and the simulation can

directly be run in the Scicos interface by setting realtime scaling to 1. This ensures that the

simulation speed in software is equal to that in realtime.

6.2 Disadvantages of Scicos-Comedi

One major disadvantage is that it is not possible to increase the resolution of the simulation

beyond 0.08 s. This doesn’t give accurate results as to achieve a high accuracy the simulation

is desired to be carried out with a timestep of 0.001 s. This is primarily attributed to the heavy

nature of the scilab computational function. As compared to C language, scilab code

execution requires more processing time which adds to the load imposed by the GUI hence if

the time step is lowered the output in realtime is not in sync with the output of the simulation.

This creates an error in the data output which is undesirable. Also, this toolbox does not

provide FIFO capability which does not allow us to send position data to the autopilot. Thus

the HILS is limited to IMU and pressure measurements.

21

6.3 Future Applications

This methodology though not as accurate as C code executed in hard realtime, offers the

ability to write simple codes in scilab and design an HIL in little or no time using scicos. It is

felt that it can be used effectively as a teaching tool and as a preliminary setup for simplistic

HIL testing. It is not recommended for designs which require a high accuracy and which

involve complex numerical computations. Since this system promises only 99% real time it is

not

22

References

[1] “RTAI-Lab”

 http://www.rtai.org

[2] “EtherLab”

 http://www.etherlab.org

[3] “Scicos”

 http://www.scicos.org

[4] “Comedi”

 http://www.comedi.org

[5] D. Lorenzo and M. Paolo, “Linux Real Time Application Interface (RTAI) in low cost

high performance motion control”

http://www.rtai.org/
http://www.scicos.org/
http://www.comedi.org/

23

Acknowledgments

It is with a great sense of gratitude that I acknowledge the support and guidance given by

Prof. Hemendra Arya during the course of this project and making it an invaluable learning

experience. I would like to thank Kaustubh and Prasanna from the controls lab for their

assistance and helping me in understanding the workings of all the hardware.

Date: April 13, 2009 Saurav Agarwal

