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ABSTRACT 
Global Positioning System (GPS) based aircraft landing is a 
methodology still not in use today despite the widespread use of 
GPS. This is primarily because a standard single frequency Global 
Positioning System (GPS) receiver provides a positioning 
accuracy of approximately 4-20 m which is not acceptable by 
aviation standards for precision landings. The accuracy of GPS 
can be further enhanced with dual frequency receivers which are 
able to provide accuracy around 1-12 m. However, these errors 
are still quite large when it comes to critical safety of life 
applications. Differential GPS (D-GPS) allows for precise 
positioning using information from reference stations on the 
ground along with satellite signals. Carrier phase tracking is one 
such D-GPS approach which allows range determination with 
centimeter level accuracy. However, carrier phase measurements 
require estimation of unknown fixed integer ambiguities before 
the receiver can start determining its position. Using single 
difference smoothed pseudorange measurements the integer 
ambiguities can be estimated with reasonable accuracy. This 
methodology brings the position error down to centimeter level 
which can meet the Federal Aviation Authority (FAA) regulations 
for Category-III (CAT-III) precision approaches. This paper 
examines an aircraft automatic landing using single differenced 
smoothed pseudorange measurements as the primary navigation 
source for an aircraft. The use of a parabolic descent trajectory is 
explored. Simulations demonstrate positioning with centimeter 
level accuracy using smoothed pseudorange measurements which 
enable a fully automatic landing. The accuracy is found to be 
dependent on the autopilot errors rather than the positioning 
system errors. 
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1. INTRODUCTION 
Developing countries which are looking to expand their regional 
aircraft operations can do so with minimal investment in 
expensive ground based signaling systems such as Instrument 
Landing System (ILS) by relying on satellite navigation. 
However, commercial satellite positioning (C/A code) does not 
offer the precision required for safety critical applications. D-GPS 
promises CAT-III accuracy using existing GPS receiver along 
with ground based reference stations using a methodology known 
as carrier phase tracking. However, carrier phase measurements 
are biased by unknown fixed integer numbers of cycles referred to 

as integer ambiguities. These values must be resolved to take full 
advantage of the carrier phase measurements. This is referred to 
as the integer ambiguity resolution problem. 

In this paper, first dual frequency GPS measurements are 
described and the simulation results of a standalone Dual-
Frequency GPS receiver during flight are presented. An algorithm 
is presented for integer ambiguity resolution [7] that uses single 
difference smoothed pseudorange measurements. This method has 
an advantage that it requires minimal computation compared to 
the conventional algorithms such as the search methods and the 
motion-based algorithms. It enables the determination of integer 
ambiguities which allow the use of phase measurements for 
accurate positioning of the aircraft. The use of two additional 
ground based GPS signal sources called integrity beacons [1] 
placed on the approach path to the airport is also investigated. The 
paper goes on to explore the design of a parabolic descent 
trajectory. Simulation results of a precision automatic landing 
over a parabolic trajectory using a longitudinal autopilot for a 
Boeing 747 are then presented. 

2. DUAL FREQUENCY RECIEVER 
EMULATION 
For the determination of its position on earth, the GPS receiver 
compares the time when the signal was sent by the satellite with 
the time the signal was received. From this time difference the 
distance between receiver and satellite can be calculated. If data 
from other satellites are taken into account, the present position 
can be calculated by trilateration. By means of four or more 
satellites, an absolute position in a three dimensional space can be 
determined along with the user clock bias.  

The user can estimate the pseudo range to a satellite ‘i’ using the 
following equation [2]: 
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iρ : Measured pseudorange to the ith satellite  

Aut : Measured time of arrival of signal at user 



Tst : Value of time of transmission in message 

At : True time of arrival at user 

tT: True time of transmission from satellite 

T: Tropospheric delay [3] 

I: Ionospheric delay [4] 

D: Geometric range from user to satellite 

B :  Satellite clock error 

ub : User clock bias 

ν: Receiver measurement noise 

c: Speed of light 

It can be seen from the above equations, the user needs to apply 
certain corrections to the measured pseudo range for the satellite 
clock bias which are transmitted in the GPS message. By using 
iono-free pseudo range measurements with a dual frequency 
receiver it is also possible to eliminate the iono-delay [6]. This is 
possible because the iono-delay is inversely proportional the 
frequency. 
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1Lρ : Pseudorange measurement using L1 carrier signal 

2Lρ : Pseudorange measurement using L1 carrier signal 

υδδρρ ++−+= Tc RiTiif )(                      (6) 

Where ρTi is the real range from the ith satellite to the receiver. 
The pseudorange contains two primary sources of error. The two 
error sources are: (a) errors in the inaccurate receiver clock (δR), 
called the receiver clock offset; and (b) errors in the inaccurate 
satellite receiving signal (δi). Note that an important property of 
δR is that it is the same for all satellite signals and pseudoranges 
since it is a property of the receiver. The tropospheric delay and 
noise are neglected as they cannot be determined by the user. 
Therefore, Eqn (6) becomes: 

)( RiTiif c δδρρ −+≅                           (7) 
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The satellite’s position is denoted as (Xi, Yi, Zi) and the receiver’s 
position as (X, Y, Z). The satellite position is calculated by the 
receiver from the ephemerides in the navigation message. The 
right side of Eq. (7) contains the four unknowns of X, Y, Z, and δR. 
Hence, to solve for the four unknowns; a minimum of four 
satellites is required to yield four equations. Since Eqn. (7) is 
nonlinear, typically this is done using the multidimensional 
Newton–Raphson method and a reasonable guess of the initial 
receiver position [5]. The initial guess is at (X0, Y0, Z0). 

ZZZYYYXXX Δ+=Δ+=Δ+= 000 ,,            (8) 

Where X, Y, Z is the true ECEF solution and ΔX, ΔY and ΔZ is the 
difference between the true solution and the initial guess. The 

initial guess at the receiver ECEF coordinates yields an initial 
guess for the true range. To correct the initial guess, ΔX, ΔY, ΔZ 
need to be determined in order to update X0, Y0, and Z0. This is 
done by a linear (first-order Taylor) expansion of  ρif in the three 
spatial coordinates. 
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The solution ΔX, ΔY, ΔZ and δR can be found using a minimum of 
four equations. Defining, 
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Using these Eqn. (10), the solution is lAx 1−=δ . After solving for 
ΔX, ΔY, ΔZ and δR the corrected coordinates are updated to yield 
X, Y, and Z. This solution is, of course, an approximation so an 
iterative approach is required whereupon the most recent solution 
becomes the initial guess and the process above is repeated until 
the desired accuracy is obtained. The receiver needs to take care 
of the fact that any random combination of 4 satellites from the 
visible satellites cannot be used. The receiver must check for 
optimal geometry by calculating the Geometric Dilution of 
Precision (GDOP) value for all possible combinations and 
selecting the combination that offers the lowest possible GDOP. 

2
44

2
33

2
22

2
11 QQQQGDOP +++=                 (11) 

Where, 
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2.1 Simulation Results 
A point to point flight from Delhi airport to Mumbai Airport at 
10,000 m altitude was simulated. There are no atmospheric 
disturbances to the aircraft and it is assumed to be flying at 
constant velocity. The error in position is plotted in Figure 1. The 
error in position (magnitude of distance between true position and 
actual position) is between 0-8 m. Figure 2 shows the error in 
velocity estimation by GPS. 

 

Figure 1: Error in position (m) 

 
Figure 2: Error in velocity measurement (ECEF Frame) 

 
Figure 3: Variation of GDOP during flight 

 
Figure 4: Satellite visibility during flight 

Figure 3 shows the variation of the GDOP during flight which can 
related to the positioning accuracy. As the GDOP is falling the 
accuracy increases. Figure 4 depicts the number of satellites 
visible during the flight. It can be seen that when a new satellite is 
introduced there is a marked reduction in the GDOP due to the 
availability of better satellite geometry. When the number of 
satellites reduces the GDOP increases due to poor geometry. 

 

 



3. CARRIER PHASE TRACKING  
According to [6] the carrier phase can be measured with a 
precision of 0.01-0.05 cycle (2mm-1cm). Precise positioning 
which is interpreted as centimeter-level positioning requires 
carrier phase measurements. The carrier phase measured at the 
user ‘u’ for the satellite ‘k’ is: 
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Where, 

k
ur : Geometric range from user to satellite 

k
uI : Advance in phase due to ionosphere  

k
uT : Delay in phase due to troposphere 

k
uN : Integer ambiguity 

  λ :  Carrier wavelength 

 k
uτ : Clock bias between user and satellite 

k
u,φε : Measurement noise 

Similarly for a reference receiver ‘r’: 
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Subtracting Eqn. (13) from (12): 
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Eqn. (14) gives what is called the single difference phase 
measurement. For short baselines i.e. when the user and reference 
are close it can be assumed that ionospheric and tropospheric 
delays are nearly the same and hence neglecting those terms: 

k
urur

k
ur

k
ur

k
ur Nr ,φετλφ +++≅                           (15) 

Thus, if the fixed integer ambiguities can be estimated, the 
relative vector from the reference to the user can be determined. 

3.1 Pseudorange Smoothing[7] 
The single difference code phase measurements can be calculated 
similar to the single difference carrier phase as: 
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Subtracting Eqn. (16) from Eqn. (15) the smoothed pseudorange 
measurement is obtained [6]: 
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Thus, from Eqn. (17) it can be seen that the value of the integer 
ambiguity can be easily estimated at a single epoch: 
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λ: Carrier signal wavelength 

These measurements are however noisy, therefore to eliminate the 
measurement noise, the values of the integer ambiguities over 
multiple epochs are averaged to obtain the final estimate. Figure 5 
shows the simulation results of integer ambiguity estimation at 
100 epochs. The rounded off values are shown by the circles.  

The standard deviation (σ) of error in integer estimation for 100 
epochs is 2.63 cycles. The accuracy increases as the number of 
sampled points increases but this slows down the process of 
carrier phase tracking as the aircraft must wait longer before it can 
switch to CDGPS mode. 

 

 

Figure 5: Error in ambiguity resolution for 100 epochs 

4. LANDING USING INTEGRITY 
BEACONS [1] 
A landing approach using carrier phase tracking was simulated to 
test the accuracy of the above mentioned method. The aircraft is 
assumed to equipped with a perfect INS to compare the results of 
pseudorange smoothing to the truth model. The airport is 
equipped with a precisely surveyed reference GPS receiver 
broadcasting its carrier and code measurements as well two 
integrity beacons placed approximately 16 km away from the 
airport on either side of the approach path. These integrity 
beacons provide the aircraft extra sources of measurements as 
well redundancy in case the user is unable to track the requisite 
number of satellites due to bad atmospheric conditions or 
Selective Availability. As the aircraft flies over these integrity 
beacons it starts collecting the smoothed pseudo range 
measurements as described in Eqn. (17). Such a maneuver is 
called a bubble pass. After collecting measurements over multiple 
epochs, the user averages the values and obtains the integer 
ambiguities according to Eqn. (18). Post resolution of the fixed 



integer ambiguities, the user plugs them back into Eqn. (15). At 
any epoch ‘t’ if there are ‘n’ satellites visible then there are ‘n+2’ 
(due to the two integrity beacons) such equations. An 
approximation is made that for short baselines that the line of 
sight vectors from the reference and user to a satellite are nearly 
the same.  

Thus for satellite ‘k’: 
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x
!

: Relative position of the user w.r.t the reference station 

k
urs
!

: Line of sight vector to satellite 

Similarly for the integrity beacon ‘j’: 
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jp : Relative vector from reference station to integrity beacon j 

Given an approximate trajectory x̂
!

, obtained from code based 
measurements, the above equations can be expressed in terms of 

the deviation from the approximate trajectory xxx
!̂!

−=δ , 
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Where, 

j
ure
!

: Line of sight vector from integrity beacon j to user 

Therefore, the measurements at a single epoch are stacked as: 
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Using least squares estimation, Eqn. (23) can be solved to update 
the relative vector till the solution converges to a desired value.  

4.1 Simulation Results 
A landing was simulating assuming a perfect Inertial Navigation 
System on board the aircraft to determine the positioning accuracy 
of carrier phase smoothing. Figure 6 shows the error in position as 
the aircraft approaches Delhi airport. For the first 120 s the 
aircraft is collecting the phase measurements for each epoch and 

relying on dual frequency GPS. After collecting this data, the 
navigation system calculates the integer ambiguities using the 
method described in section 3. Post t = 120 s, the aircraft uses 
carrier phase tracking (parallel to ILS where aircraft tracks glide 
slope upon reaching the outer marker). Figure 6 shows that as the 
aircraft switches from dual frequency GPS to carrier phase 
tracking at t = 120s, the error in position drops drastically close to 
1.4 m. As time progresses, for shorter baselines the error is 
gradually reducing. Figure 7 shows the error in position during 
carrier phase differential GPS (CDGPS) mode. 

 
Figure 6: Error in position during airport approach (m) 

 

Figure 7: Error in position during CDGPS mode 

 

 



5. MEETING FAA REGULATIONS 
The FAA navigation accuracy requirements for precision 
approaches using ILS are shown in Table I. 

Table 1. FAA requirements for precision approach 

Category Visibility Decision 
Height 

Accuracy Req. 
95% limits 

CAT I 800 m 60 m Horizontal 16.5 m 
Vertical 3.4 m 

CAT II 360 m 30 m Horizontal 6.5 m 
Vertical 1.6 m 

CAT IIIa > 210 m < 30 m Horizontal 4.1 m 
Vertical 0.5 m 

CAT IIIb 45-210 m < 15 m  

CAT IIIc < 45 m 0  
As seen from the Table I, for matching CAT-IIIa requirements for 
landing aircrafts cannot rely on traditional GPS positioning. 
Carrier phase tracking using integrity beacons on the ground is 
easily able to match CAT-IIIa requirements. Table II shows the 
navigation accuracy using carrier phase positioning. The error 
falls well below the range defined by the FAA. 

Table 2. Navigation accuracy of CDGPS 

Dimension Mean 
Error 

Standard 
Deviation 

(σ) 
Horizontal 0.07 m 0.059 m 

Vertical 0.25 m 0.31 m 

6. AUTOMATIC LANDING SIMULATION 
An automatic landing was simulated for a Boeing 747, a 
longitudinal autopilot was simulated since GPS measurements 
tend to be more erroneous in the vertical as seen from Table 2. We 
explore the use of a parabolic descent path. Such a trajectory can 
in the future be used for a Continuous Descent Approach which 
allows the aircraft to descend from high altitudes to the runway in 
a smooth manner. This approach has been shown to reduce fuel 
consumption and enables significant noise reduction which is a 
concern in cases where airports are located near populated 
areas[8]. According to tests by Boeing and the FAA, CDA at a 
single airport can save millions of liters of fuel, and reduce 
atmospheric carbon dioxide emissions significantly. Figure 8 
shows the system architecture of a GPS based landing system.  

 

Figure 8: System Architecture 

6.1 Approach Trajectory Design  
A traditional trajectory for landing makes use of a linear descent 
followed by thrust increase to level out. This method is followed 
recursively till the aircraft intercepts the ILS signal. The ILS 
signal usually has a 2-3 degree glideslope. A parabolic continuous 
descent trajectory was examined for the landing simulation. The 
use of GPS based navigation allow us to design such a trajectory 
which would traditionally not be possible with conventional ILS 
systems which only allow straight line descents. Such a trajectory 
is considerably easy for an autopilot to follow compared to a 
human pilot and allows for minimal fuel usage during the 
procedure. Approximately 50 m above the runway the aircraft 
switches over to an exponential trajectory for the flare phase 
which allows for a smooth touchdown within load limits of the 
aircraft. Figure 9 shows the approach trajectory used for the 
simulations. 

 

 

Figure 9: Parabolic landing trajectory 

 

 

 

 

 

 

 



6.2 Landing Autopilot Design 
Classical control design methods were used to arrive at the 
landing autopilot controller. The longitudinal mode of the Boeing 
747 in landing configuration was examined. The autopilot is 
designed to minimize the vertical deviation 'd' from the designed 
trajectory while maintaining the airspeed. The automatic control 
of the trajectory requires the simultaneous control of thrust and 
pitch attitude because otherwise, using only the elevator to gain 
altitude would result in a loss of airspeed.  

 

Figure 10: Landing autopilot design 

Figure 10 shows the design of the autopilot where, 

Vc: Control input for velocity 

dc: Control input for vertical deviation 

G1/2/3: Controllers 

kq: Pitch rate gain 

kϴ: Pitch attitude gain 

Dth: Throttle Input 

De: Elevator deflection 

A/C: Aircraft Dynamics 

Vt : Aircraft Velocity 

d: Vertical deviation from glideslope 

6.3 Simulation Results 
A Boeing 747 in landing configuration is assumed to be 
approaching the runway. The runway is at an altitude of 216 m. 
Wind disturbances have been accounted for with a heavy 15 m/s 
head wind with a random variation modeled as Gaussian noise, 
similarly there is an updraft of 5 m/s with random variation 
modeled as Gaussian noise. Sensor errors have been modeled as 
Gaussian white noise disturbances scaled appropriately. Figure 11 

shows the simulation results for trajectory following. Prior to t = 
100 seconds the aircraft is relying on standard dual frequency 
GPS measurements. After t = 100 seconds the aircraft switches to 
carrier phase positioning using smoothed pseudorange 
measurements.  
Figure 12 shows the vertical deviation from the glideslope. It can 
be seen that there is a considerable error in the aircraft trajectory 
from the design trajectory prior to the switch. The error falls 
rapidly when the aircraft switches to differential GPS. The error 
rises as the trajectory becomes more vertical near the end which 
can be ascribed to the slow response of a heavy aircraft. Another 
reason for the error is the wind disturbance. The mean error is 
0.85 m in the vertical ('d'). The standard deviation (σ) is 1.72 m. 

 

Figure 11: Aircraft trajectory vs. ideal trajectory 

 

Figure 12: Vertical deviation from glideslope 

 



 

Figure 13: Flare Phase 

Figure 13 shows the flare phase of the landing. The aircraft is 
flying above the designed trajectory which can mainly be 
attributed to the fact that the wind disturbances were high. 

7. Conclusions 
Simulations show that a dual frequency receiver is accurate 
enough to provide reliable in-flight navigation, however it cannot 
be used for precision landing as the errors are quite large. Precise 
positioning using carrier phase tracking using smoothed 
pseudorange measurements for integer ambiguity resolution 
shows promising results for CAT-III approaches. One drawback is 
that the integer ambiguity resolution is not real time and requires 
that the user collect data from multiple epochs before a reliable 
estimate of the ambiguity can be made. This can be removed in 
the future with the advent of the additional L5 GPS frequency.  
[6] Describes a method using L1, L2 and L5 frequencies for real 
time estimation of the ambiguities with increased accuracy (σ = 
0.3 cycles). Simulations of automatic landing using smoothed 
pseudorange measurements show that performance of landing 
system are dominated by the autopilot error and not the system 
accuracy. The autopilot accuracy can be increased with the use of 
more sophisticated control system designs such as Linear 
Quadratic Gaussian Controllers. The use of a continuous descent 

approach was explored as one of the future applications for 
satellite based landing systems. Such a system can even allow for 
curved trajectories allowing incoming aircrafts to approach from 
multiple directs before converging. This would be make the air 
traffic flow smoother and more efficient as it would remove the 
restriction of aligning aircrafts on a straight approach path from 
far away. 
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