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Abstract—The advent of Global Navigation Satellite Systems has 

brought about an additional navigational aid for aircrafts. Due to 

their complementary error characteristic, various approaches 

involving Global Positioning System coupled with the Inertial 

Navigation System have been looked into for complete 

autonomous navigation and attitude estimation of the aircraft. In 

this paper, we study, through simulation, approaches of GPS-INS 

integration based on the extended Kalman filter. An open-loop 

tightly-coupled GPS-INS integration approach utilizing raw 

pseudorange measurements is analyzed in presence of realistic 

measurement errors. Improvements in the approach, via bias 

estimation and carrier phase tracking have also been briefly 

examined. Lastly, a computationally efficient approach to resolve 

integer ambiguities for carrier phase tracking is also simulated. 

Although the results presented are based on GPS simulation, the 

analysis is equally applicable to other satellite navigation systems 

due to their similar operating principles.                                                   

Keywords—Extended Kalman Filter, GPS-INS integration 

I.  INTRODUCTION  

Global Navigation Satellite Systems are increasingly 
becoming more and more important for cost-effective 
navigation of aircrafts. Apart from the global navigation 
systems, a regional navigation satellite system for India, named 
the Indian Regional Navigational Satellite System (IRNSS), is 
being developed by the Indian Space Research Organization 
(ISRO). The presence of Global Positioning System (GPS) 
receivers has become commonplace in today‟s world, and 
various aircrafts ranging from commercial jets to micro aerial 
vehicles are equipped with GPS receivers, albeit of different 
accuracies.  

Inertial Navigation System (INS), a dead-reckoning 
navigational aid, includes the sensors – accelerometers and 
gyros – for measurement of linear acceleration and angular 
rates, respectively. These measurements are available at a very 
high rate (~100 Hz) and are suitably integrated to obtain the 
aircraft‟s position, velocity and attitude (orientation) [1]. 
However, the measurements from these sensors are erroneous 
due to the presence of random errors and unknown biases. 
Moreover, these errors increase with time, and, thus, need to be 
periodically corrected for using some external aid.  

GPS receivers, which are used to obtain the position and 
velocity of the aircrafts, on the other hand, do not provide 
measurements as frequently as the INS. However, the errors 
exhibited by the GPS do not grow with time. Due to this 
complementary error characteristic of GPS and INS, various 
approaches involving GPS coupled with the INS have been 
investigated by researchers for complete navigation and 
attitude estimation of the aircraft [2-4].  

In this paper, we study, through simulation, approaches of 
GPS-INS integration which utilize the Kalman filter 
framework. We first analyze an open-loop tightly-coupled 
GPS-INS integration approach, which utilizes raw 
measurements from a stand-alone single-frequency GPS 
receiver. Due to inherent limitations in accuracy that arise due 
to a single-frequency GPS receiver, improvements are required 
for critical aircraft applications. Hence, techniques for 
improved accuracy of GPS measurements, namely, differential-
GPS (DGPS) and carrier phase are simulated. However, carrier 
phase, although significantly accurate is also equally 
challenging, specifically due to the need to resolve integer 
ambiguities. So, a computationally efficient approach to 
resolve integer ambiguities is presented. The paper concludes 
with simulation results of aircraft landing, with aiding from 
carrier phase GPS measurements. Although, the work here 
includes results based on GPS simulation, the analysis 
presented is applicable to other satellite navigation systems 
(both regional and global) as well due to their similar operating 
principles. 

II. MOTIVATION 

To better demonstrate the need for GPS-INS integration, 
we first simulate and observe the performance of aircraft 
navigation systems without any INS aiding. An aircraft flight is 
simulated from Srinagar to Kanyakumari, for which the 
navigation is done through an unaided INS [5]. No biases are 
considered for the accelerometer and gyro measurements, and 
the measurement error has been modeled as white noise. The 
values for the gyro and accelerometer white noise power 
spectral densities (PSD) are taken as, 4.84×10-7 (deg/s)2/Hz and 
2.26×10-7 (m/s2)2/Hz, respectively, and are assumed to be 
identical for all the three axes. 
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Figure 1.  Latitude-Longitude Error: INS only navigation 

In spite of assuming low noise and no bias in the 
measurement, limitations of an unaided INS are evident from 
Fig. 1, which shows the errors in aircraft latitude and longitude. 
The resulting error in position increases to around 10 km at the 
end of the flight trajectory. Similar unacceptable errors are 
observed in aircraft‟s attitude and velocity [5]. Further, precise 
navigation with a GPS only system is also not viable both due 
to the available positioning accuracy and its inherent low rate. 
Having understood the motivation of integrating GPS and INS 
measurements, the following section briefly describes GPS-
INS integration approaches which provide a pragmatic 
navigation system. 

III. GPS-INS INTEGRATION APPROACHES 

Several GPS-INS integration approaches, differing in their 
complexity and accuracy, exist in the literature. The crudest 
from is to obtain a solution of position and velocity estimates 
from GPS measurements, and use them to reinitialize the INS. 
In this case the equations of GPS and INS are totally 
uncoupled. The variation in integration architectures lies in 
mainly three fields, 

 Method of INS error correction by GPS measurements, 

 Type of GPS measurement being used, and 

 Way in which GPS receiver is aided by the INS. 

In all the approaches of GPS-INS integration, Kalman filter 
(or its variations) is used, due to its optimality and capability 
for multi-sensor fusion. Based on the above parameters the 
various GPS-INS approaches are broadly classified as, Loosely, 
Tightly, and Deeply coupled [4]. Additionally, depending upon 
whether the correction is applied to reinitialize the INS after 
every time-step, or not, we have open and close loop 
architectures. The approach presented in the next section is 
open-loop tightly coupled architecture since the navigation 
corrections are not used to reset the INS propagation equations, 
and raw pseudorange measurements are used to aid the INS.  

IV. MODELING AND FORMULATION 

In this section, we briefly present one of the GPS – INS 
integration approaches, along with its formulation and 
simulated results. In our study, we consider the open-loop 
tightly coupled integration architecture. The basic formulation 
and simulation setup is adopted from [6] and modified for our 
study [7].  

GPS receivers require signals from at least four satellites to 
determine position and velocity. However, since the tightly-
coupled approach uses raw GPS measurements, the algorithm 
can be used to aid INS even when a complete position fix is not 
available, i.e., when less than four satellites are visible. Hence, 
this approach is both robust (since it doesn‟t always require a 
complete position solution) as well as easy to implement (since 
only one EKF is used). In the following presentation, due to the 
paucity of space, we mention just the salient features of the 
algorithm. For basics of the EKF algorithm refer [3, 9]. 

A. INS Measurement Error Characteristics 

As mentioned earlier, measurements from the INS are 
erroneous. The random errors are modeled as white noise, and 
the biases are often time-varying, and can be modeled as an 
exponentially auto-correlated process. Additionally, these 
sensor measurements include scale factor and misalignment 
errors. For ease of analysis, measurement errors are modeled as 
an additive sensor bias and white noise. The sensor biases are 
assumed to be constant (0.01 g for accelerometers and 0.1 
deg/hr for gyros along each axis), and no misalignments are 
considered. The PSDs of the white noise in accelerometer and 
gyro measurements are taken same as that of Sec. II. A 
strapdown INS is considered, hence both acceleration and body 
inertial rate vector measurements are provided in the Body 
frame of reference. Further, the INS measurements are 
available at 100 Hz. 

B. GPS Measurement Error Characteristics 

The GPS constellation is simulated to determine the visible 
satellites and true pseudoranges at a given time instant. The 
GPS receiver measurements, in practice, include error terms 
from sources such as the ionosphere, troposphere, receiver and 
satellite clock, satellite ephemeris, multipath, and electronic 
noise. Some of these errors are stochastic, while some depend 
on time of the day, position of the receiver, and environmental 
conditions [8].  The pseudorange measurement (ρ) from the ith 

GPS satellite depends on satellite position (Xi,Yi,Zi), receiver 
position (X0,Y0,Z0), receiver clock bias (Δtb), speed of light (c), 
and measurement noise (wi), as described in Eq. (1). 

In this section, a simplified model considering the GPS 
pseudorange measurement errors as an exponentially auto-
correlated process is used for simulation (Eq. 2). (This is 
improved upon, and a more realistic model which explicitly 
considers error terms due to troposphere and ionosphere is used 
in the following section while utilizing the carrier phase.) The 
strength of the measurement error depends on the correlation 
parameter (λ) and standard deviation of the discrete white noise 
(driving the exponentially auto-correlated process) wv,k, which 
are taken as 0.9983 and 0.0306 m, respectively. The error 
strength of the exponentially auto-correlated process is chosen 
so as to account for tropospheric errors, ionospheric errors and 
electronic noise, as would be encountered in a single-frequency 
receiver.  
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The GPS receiver clock noise, which is also a primary 
source of error, is modeled using a two-state model involving 
clock drift (d) and bias (b = Δtb)  (Eq. 3a-3b).  The PSDs of the 
white noise vb and vd, are taken as, 4×10-20 Hz-1 and 8×10-19 
(1/s)2/Hz, respectively. The GPS measurements are assumed to 
be available at 1 Hz. For more details of GPS model considered 
here, see [9]. 

C. GPS-INS Integration Algorithm 

The GPS-INS integration algorithm utilizes an extended 
Kalman filter to combine the measurements from the INS and 
the GPS, and provide navigation estimates. The algorithm is 
used to estimate 11 states which include – the position, velocity 
and attitude of the vehicle, and GPS receiver clock bias and 
clock drift. The EKF instead of estimating the total state 
estimates the error state, which is then used to obtain the 
estimate of the total state. The state vector for the EKF is given 
in Eq. (4), where δx, δv and ψ, denote position, velocity and 
tilt (attitude) error of the vehicle in the local vertical local 
horizontal (LVLH) frame. 

The INS processes the measurements of gyros and 
accelerometers, and through integration in the LVLH frame 
(also referred to as the navigation frame, with subscript n) 
provides an estimate of position, velocity and attitude. The 
mechanization equation for estimating velocity and attitude are 
given in Eq. (5a-5b).  

The transformation matrix from body to navigation frame is 

denoted by the Cnb matrix, and z

xy / denotes the skew-

symmetric cross-product matrix associated with the angular 
rate vector of coordinate frame x with respect to coordinate 
frame y expressed in the z frame. The vector gn denotes the 
gravity vector in the navigation frame, and acceleration 
measurements are denoted by fb. The subscripts i, e, and b, 
denote the Earth Centered Inertial (ECI), Earth Centered Earth 
Fixed (ECEF), and body fixed frame, respectively.  

Position of the vehicle is obtained through integration of its 
velocity. These estimates of position, velocity and attitude, 
which are available at 100 Hz due to the frequent INS 
measurements, are used as the process model for the aircraft 
and are thus used for the prediction step of the extended 
Kalman filter. Note that though INS provides sensor 
measurements, it is in fact the process model (and not the 
measurement model) of the EKF. However, the estimates from 
INS deteriorate with time due to the bias and noise in the gyro 
and accelerometer measurements.  

On the other hand, GPS pseudorange measurements, which 
are available at only 1 Hz but whose errors are limited in 
magnitude, are used during the correction step of the EKF. 
Thus, GPS model represents the measurement model of the 
EKF. As observed in Eq. (1), the measurement model which 
relates pseudorange (ρ) to position is nonlinear due to the 
relation of pseudorange with elements of the state vector 
(namely position). Hence, there is a need to use the EKF for 
nonlinear systems. Since, an error state formulation is being 
used the difference between measured and estimated 
pseudorange is used as the effective measurement. The 
measurement sensitivity matrix (H) is obtained by calculating 
the Jacobian of the pseudorange at the predicted estimates. A 
single row of the sensitivity matrix for the ith satellite 
measurement is given by Eq. (6), where the vector en denotes 
the line-of-sight unit vector from the receiver to the satellite. 
As Eq. (1) suggests, the receiver clock bias also affects the 
pseudorange measurement.  

Here, even though only pseudorange measurements are 
considered, the filter can be adapted to utilize range rate and/or 
carrier phase measurements. For implementing EKF matrix 
parameters for quantifying uncertainty in models and the initial 
estimates are also required. The process noise matrix (Q) 
depends on the error characteristics of the accelerometers and 
gyros and can be obtained from either the specification sheets 
or ground based tests. The measurement noise matrix (R) 
signifies the uncertainty in GPS measurements, and is specified 
based on the characteristics of the GPS receiver. The initial 
covariance matrix (P0), representing the current formulation 
depends on the knowledge of the initial state. The filter is 
initialized using the a priori estimate of state vector, which 
may be obtained with some additional sensors. For the 
simulation results presented next the matrix Q is obtained from 
PSD of gyro and accelerometer specified in Sec. III - A, the R 
matrix is taken as a diagonal matrix with each diagonal element 
equal to (30m)2. For detailed equations and EKF parameters 
such as the process noise matrix (Q), measurement noise 
matrix (R) and initial covariance matrix (P0), representing the 
current formulation refer [6-7].  

Figure 2.  True Trajectory 

 



 

 

 

 

 

 

 

D. Simulation Results  

In order to observe the simulated performance, a true 
trajectory representing the real aircraft motion is required. One 
such trajectory for a typical simulation is presented in Fig. 2. 
The aircraft motion is simulated using navigation equation in 
the navigation frame. The aircraft initiates with a speed of 650 
km/h in the east direction. The aircraft motion is governed by 
the bank command, and the aircraft is following the bank-to-
turn maneuver, which involves a pulsed bank command 
resulting in change in aircraft‟s latitude. The position errors are 
represented in the ECEF frame in the plots. The position, 
velocity, and attitude estimation error for a simulation run are 
presented in Fig. 3, 4, and 5, respectively. The position 
accuracy though improves with the help of GPS aiding is still 
at the decimeter level. The envelopes in the plots represent the 
standard deviation of the estimation error. 

Figure 3.  Estimation error in Position 

 

Figure 4.  Estimation error in Velocity 

The errors in velocity and attitude remain within the 
predicted bounds, as opposed to the position estimates. Similar 
results were obtained for a flight which incorporated a circular 
trajectory [7]. Note that in these simulations the aircraft is 
assumed to maintain the flight path, and no effect of estimation 
errors on aircraft control is considered. Further, simulations for 
larger flight time periods have been carried out in Ref. 10, 
which also yield decimeter level accuracy in position 
estimation. 

 Fig. 6 shows filter performance, when fewer than four GPS 
satellites are visible. As expected, errors increase when fewer 
satellites are visible; however, even with single satellite of 20 
m is observed after 400 s. Hence, even in the undesirable 
situation of reduced visibility the filter could provide 
satisfactory performance for a short period of time. Using more 
evolved architectures the performance during such situations 
can be further enhanced.  

E. Bias Estimation 

The EKF algorithm also offers a straight-forward approach 
to include additional states if required; for instance, to estimate 
additional sensor errors. Estimation of gyro and accelerometers 
biases, which vary with time, can be done using the EKF 
framework by augmenting the process model. This may be 
essential for systems involving low-grade MEMS sensors. 
Performance of one such formulation can be observed in [10], 
which estimates the gyro and accelerometer biases to obtain 
improved estimation accuracies. 

Figure 5.  Estimation error in Attitude 

 

Figure 6.  Position Estimates – with reduced Satellite visibility 



 

 

 

F. Comments 

The above GPS-INS integration architecture is observed to 
be functional and robust for position, velocity and attitude 
estimation. However, the decimeter-level estimation accuracy 
achieved for navigation, which may be sufficient for level 
flight operation, is inadequate for critical phases of aircraft 
operation, such as, Category-III autonomous landing. A 
standard single-frequency GPS receiver provides a positioning 
accuracy of around 4-20m, limiting the achievable navigational 
accuracy. Hence, next, we briefly analyze methods to utilize 
more precise GPS measurements that are available via D-GPS 
and single- or dual-frequency carrier phase measurements to 
improve the estimation performance. 

V. CARRIER PHASE TRACKING 

Better processing of GPS measurements, through better 
hardware, and prior to using them in the GPS-INS integration 
algorithm, can result in substantial improvements in navigation 
performance. Firstly, use of a dual-frequency receiver offers a 
method of estimating and partially eliminating the errors due to 
ionosphere, a major source of measurement error in GPS [3]. 
This improvement may also be achieved using D-GPS through 
single frequency receivers, albeit with the need of a reference 
GPS receiver or integrity beacons. Secondly, more important is 
the use of carrier phase tracking approach which allows range 
determination with sub-centimetre level accuracy [8]. 
However, carrier phase tracking requires an additional estimate 
of unknown but fixed integer ambiguities before the receiver 
can begin to determine the position. The estimation of integer 
ambiguity is a challenging problem, and only through its 
accurate estimation a precise navigation solution can be 
achieved.  

The approach presented here for carrier phase tracking 
requires a reference receiver. The single-difference phase 
measurement, utilizing user and reference measurements, 
depends on the geometric range between satellite and the user, 
and the integer ambiguity. For short baselines, i.e., when the 
user and reference are close the ionospheric and tropospheric 
errors are largely eliminated. Hence, by knowledge of the 
integer ambiguity precise positioning can be achieved. For a 
detailed mathematical formulation of the approach presented in 
this section, refer [11]. 

A. Integer Ambiguity Resolution 

In order to resolve the integer ambiguity (Nu-r) for precise 
positioning, single-difference code phase measurements (ρu-r) 
are first calculated similar to the single-frequency carrier phase 
measurements (φu-r). Assuming short baselines,  the smoothed 
pseudorange equations is obtained as shown in Eq. (7) [12]. 

                            φu-r – ρu-r ≈ λNu-r + ε                               (7) 

The symbol λ denotes the GPS carrier signal wavelength and ε 
represents the measurement noise post the two differencing 
operations. A least square error estimate of the integer 
ambiguity can be obtained based on Eq. (7), resulting in the  
following simple expression (Eq. 8), 

                   Nu-r,estimate ≈ round[λ-1(φu-r – ρu-r)]                    (8) 

Figure 7.  Integer Ambiguity Resolution [11] 

which can be used at a single epoch requiring minimal 
computation as compared to the conventional algorithms such 
as the „search methods‟ and the motion-based algorithms. 
However, these measurements are noisy, therefore to eliminate 
the measurement noise, the values of the integer ambiguities 
over multiple epochs are averaged to obtain the final estimate. 
Fig. 7 shows the simulation results of integer ambiguity 
estimation with 100 epochs. The standard deviation of error in 
integer estimation with 100 epochs is 2.63 cycles. Accuracy 
increases with the number of sample points, but this slows the 
process of carrier phase tracking as the aircraft must wait 
longer before it can switch to the precise positioning mode. 

B. Simulation Results 

A simplified simulation of aircraft landing which assumes 
an ideal INS using the approach described above is presented. 
Note that, in the section, the GPS solution is obtained via least 
square estimation instead of an EKF. In real systems, the 
improved GPS solution obtained using carrier phase is used as 
an input for the GPS-INS integration algorithm. One reference 
receiver, whose position is known accurately, and two integrity 
beacons, which are located at a distance of around 16 km on 
either side of the runway, are considered to broadcast their 
measurements and are included in the simulation. These signals 
from the integrity beacons and the receiver are received by 
GPS receiver as additional measurements and make the 
navigation solution more accurate as well as robust.   

Figure 8.  Position estimates – Effect of Integer Ambiguity Resolution [11] 



 

 

  

Figure 9.   Aircraft Landing Trajectory [11] 

A more detailed GPS model is used for the simulation 
presented in this section. Error in GPS measurements from 
terms due to the ionosphere [13] and the troposphere [14] are 
explicitly included instead of using the simplifying assumption 
of exponentially auto-correlated process. Additionally, white 
noise is added to the GPS measurements to model the effect of 
error sources apart from the ionosphere and the troposphere.  

Fig. 8 shows the error in position estimates of a simulated 
aircraft trajectory while landing. For the initial 120 s, the 
aircraft is collecting carrier phase measurements but relies only 
on code measurements as the integer ambiguity is unknown. 
Through these collected measurements integer ambiguity is 
estimated using Eq. (8), and is used to correct the phase 
measurements after 120 s. The corrected carrier phase 
measurements result in a steep error reduction in position 
estimates from around 10 m to 1.5 m. As time progresses, the 
error is seen to gradually reduce to sub-cm level accuracy. 

Closed loop simulations for automatic aircraft landing 
which include effect of aircraft navigation as well as control 
are also carried out. A parabolic continuous descent trajectory 
and aircraft parameters of Boeing 747 are used for simulating 
the aircraft trajectory. Fig. 9 shows the true trajectory 
highlighting the parabolic continuous descent approach. Fig. 10 
shows the vertical deviation from the commanded glide slope 
achieved by the closed loop system.  The sub-meter level errors 
observed in Fig. 10 are due to the effects of aircraft control and 

Figure 10.  Vertical Deviation from Glideslope [11] 

are much larger than the navigation accuracy, indicating the 

need for detailed closed loop analysis. For detailed results of 

aircraft landing, see [11]. 

VI. CONCLUSION 

In this paper, through analysis and simulation of an open-
loop tightly coupled GPS-INS integration architecture which 
utilizes raw pseudorange measurements, satisfactory navigation 
accuracy has been obtained for level flight. The filter is 
observed to be robust, as it functions even when fewer than 4 
GPS satellites were visible. However, for critical phases such 
as aircraft landing, carrier phase tracking is essential to achieve 
desired estimation performance. A technique for integer 
ambiguity resolution has been presented to utilize GPS carrier 
phase measurements. Basic simulation results of navigation 
during aircraft landing using carrier phase measurements show 
remarkable improvements in estimation accuracy. Future work 
would include investigation of the above approaches through 
more detailed closed-loop simulation. Detailed model of 
aircraft dynamics, controls and sensor (GPS and INS) errors 
would be incorporated to make the simulation more realistic. 
Further, improvements in algorithm for considering sensor 
misalignment, and GPS redundancies will also be considered.  
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