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Abstract

An autonomous robot acting in an unknown dynamic environment requires a detailed under-
standing of its surroundings. This information is provided by mapping algorithms which are
necessary to build a sensory representation of the environment and the vehicle states. This aids
the robot to avoid collisions with complex obstacles and to localize in six degrees of freedom i.e.
x, y, z, roll, pitch and yaw angle. This process, wherein, a robot builds a sensory representation
of the environment while estimating its own position and orientation in relation to those sensory
landmarks, is known as Simultaneous Localisation and Mapping (SLAM).

A common method for gauging environments are laser scanners, which enable mobile robots to
scan objects in a non-contact way. The use of laser scanners for SLAM has been studied and
successfully implemented. In this project, sensor fusion combining laser scanning and real time
image processing is investigated. Hence, this project deals with the implementation of a Visual
SLAM algorithm followed by design and development of a quadrotor platform which is equipped
with a camera, low range laser scanner and an on-board PC for autonomous navigation and
mapping of unstructured indoor environments.

This report presents a thorough account of the work done within the scope of this project.
It presents a brief summary of related work done in the domain of vision based navigation
and mapping before presenting a real time monocular vision based SLAM algorithm. A C++
implementation of the visual slam algorithm based on the Extended Kalman Filter is described.
This is followed by the design and development of the quadrotor platform. First, the baseline
specifications are described followed by component selection, dynamics modelling, simulation
and control. The autonomous navigation algorithm is presented along with the simulation
results which show its suitability to real time application in dynamic environments. Finally,
the complete system architecture along with flight test results are described.
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C H A P T E R 1

Introduction

If one compares the success and application of robotics within the domain of industrial produc-
tion to other areas like personal assistance, search and rescue etc., one sees that mobile robots
still have a small presence in our society. This paradigm is soon about to undergo a major
transformation. Robotic vacuum cleaners [10] capable of mapping a house and cleaning it are
now easily available in the market. Experimental robotic cars such as Stanford University’s
Stanley [43] have traversed hundreds of miles of urban and off-road terrain autonomously. Re-
search robots such as the Pioneer P3-DX have been outfitted with laser scanners and a host
of other sensors to successfully map large indoor environments. However, extending the same
capabilities to Micro Aerial Vehicles (MAVs) with similar success is a challenge that has not
yet been fully tackled. A micro aerial vehicle (MAV) is, by definition, an unmanned aerial
vehicle which has significant size and weight restrictions and can either be piloted remotely or
fly autonomously.

(a) (b)

(c) (d)

Figure 1.1: (a) Stanford’s autonomous car Stanley (b) Pioneer P3-DX: A popular research robot in
SLAM configuration (c) iRobot’s SLAM robot (d) Neato Robotics XV11 autonomous vacuum cleaner

MAVs as shown in fig. 1.2 are being used in several military and civilian applications, in-
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(a) (b)

Figure 1.2: (a) Honeywell RQ-16 T-Hawk (b) Draganfly X6

cluding surveillance, weather observation, disaster relief coordination, and civil engineering
inspections. Using Global Positioning System (GPS) aided Micro Electro-Mechanical Sensor
(MEMS) based inertial measurement units, researchers have developed MAVs that display a
high level of autonomy in outdoor environments without human intervention. Unfortunately,
most indoor environments do not have access to global localisation information such as GPS.
Autonomous MAVs today are thus very limited in their ability to operate in these areas. Tradi-
tionally, unmanned vehicles operating in GPS-denied environments can rely on dead reckoning
for localization, but these measurements drift over time. Alternatively, by using on-board en-
vironmental sensors, simultaneous localization and mapping (SLAM) algorithms build a map
of the environment around the vehicle from sensor data while simultaneously using the data to
estimate the vehicle’s position. In contrast to ground vehicles, there have been fewer successful
attempts to achieve the same results with MAVs. Some of them have been partly successful
due to a combination of limited payloads for sensing and computation, coupled with the fast
and unstable dynamics of air vehicles.

Figure 1.3: A hotel building damaged by fire

Picture a scenario where a hotel is damaged by an earthquake. Hundreds of guests are trapped
inside the damaged structure and there is a distinct possibility of a fire starting due to electri-
cal faults. Such a situation presents an extremely dangerous environment which is difficult for
human emergency response teams to penetrate and analyse in a quick and safe manner. A tool
would be needed to rapidly provide pictures from in and around the building and map a safe
path for rescue workers to search for hostages. An aerial robot capable of flying autonomously
in a highly unstructured environment would be the perfect tool for this job. It would easily fly
over rough terrain and provide comprehensive coverage of the situation. Such an MAV presents
a host of challenges which are detailed in the next section.
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1.1 Key Challenges

It is easy to imagine the nature of tasks we could assign to an autonomous MAV but there
are numerous challenges to consider. Firstly, there exist two basic issues that any mobile robot
must solve in order to achieve a certain degree of autonomy; it should be able to figure out
where it is within the world and should be able to drive itself in a safe manner towards a target
location. Issues faced greatly depend on low-level issues, such as the kind of employed sensors
and high level problems such as computational complexity. The main issues faced by an MAV
are:

• Limited Payload: For an aerial platform there is the obvious constraint of size and
weight. We would require an MAV to have as much autonomy as possible while at the
same time having a sufficient range of mobility. In a hovering platform like a quadrotor,
most of the energy is consumed to keep the vehicle in the air. Therefore, we need to ensure
that the payload demands as little power as possible. Sensors like the ones mounted on the
robots shown in Fig. 1.1 are not suitable for an MAV. We are limited to using lightweight
laser scanners, miniature cameras and MEMS based IMUs.

• Limited Computational Resources: SLAM algorithms are highly computationally
demanding even for powerful desktop computers and are therefore not suitable for small
embedded computer systems that might be mounted on-board MAVs. It is possible to
process the sensory data on a ground control station and have the two systems commu-
nicate via a wireless link. However, the network bandwidth becomes a hurdle. Images
captured by the onboard camera need to be compressed which adds noise and reduces
the amount of information available to analyse. It also adds noise to the signals which
is particularly damaging for feature detectors that look for high frequency information
such as corners in an image. Additionally, the wireless link would cause a fixed time
delay. While this delay can be ignored for slow moving, passively stable ground robots,
MAVs have fast and unstable dynamics and a delay in the state estimation would make
the platform highly unreliable.

• Drift prone sensory data: A ground vehicle has access to wheel odometry whereas
an MAV has to rely on highly noisy and drift prone acceleration and angular rate mea-
surements from a gyro. If these measurements are integrated, the position error would
grow unbounded. Therefore, an MAV uses relative measurement sensors which allow us
to estimate its pose.

• Rapid Dynamics: Unlike stable ground vehicles an MAV cannot stand still at a point
in space. A ground robot can stand still and take multiple measurements in case its state
estimate uncertainty becomes too large. However, an MAV does not have this luxury,
it is constantly in a state of motion which means that the motion planning algorithms
must be highly adapted to aerial applications. They must ensure that the robot is always
viewing known as well as unknown features.

• Difficult to hold position: An aerial vehicle’s position tends to drift in space while it
is flying. Even small perturbations/oscillations can cause the vehicle to drift randomly.
Therefore, the controller must have access to accurate and timely state estimates for both
position and velocity to enable steady operation.
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1.2 Related Work

In recent years, a lot of researchers have attempted to port the capabilities of UGVs to MAVs.
Coates et al. [27] have demonstrated terrific autonomous aerobatic manoeuvres on a helicopter
by training it using a sub-optimal expert human pilot. Researchers have also shown cooperative
swarms of MAVs [42]. While these attempts are all sophisticated pieces of the work, most of
them rely on motion tracking systems for localisation indoors. In this work, the aim is to
develop a flying robot that can operate autonomously with on-board sensing and computation.
This is in contrast to approaches taken by other researchers such as [31] and [32] who have
flown indoors using position information from motion capture systems, or external cameras
[13]. Blosch et al. [19] have developed a system where they use Parallel Tracking and Mapping
developed by Klein et al. [33] to use a downward looking camera mounted on a quadrotor UAV
to estimate its pose and trajectory. Sinopoli et al. [40] developed a system for visual navigation
by building a 3D collision risk map of the environment and using vision as the obstacle detection
sensor.

Figure 1.4: Ascending Technologies Pelican Quadrotor [5]

One of the first successful attempts at SLAM using an aerial mapping was by [16]. The MAV
shown in fig. 1.4 was developed as a collaboration between researchers at MIT and Ascending
Technologies GmbH [5]. Equipped with colour cameras, on-board laser scanner, Atom single
board computer and a MEMS based IMU this vehicle was successful in winning the Interna-
tional Aerial Robotics Competition 2009 which required the quadrotor to autonomously enter
a hazardous unknown environment through a window, explore the indoor structure without
GPS, and search for a visual target. While this system is successful in navigating and localising
in a rectilinear environment its capabilities are limited by its 2D sensing.
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1.3 Aims and Objective

The work presented in this thesis describes a system that integrates sensing, planning, and
control to enable a quadrotor to autonomously explore indoor environments using on-board
resources without a priori information. The objectives of this project are as follows:

• Implement Extended Kalman Filter based Monocular SLAM Algorithm

• Design and Development of a quadrotor flying platform

• Hardware integration and bench testing of quadrotor

• Implement sensor fusion and path planning algorithms

• Validate system with real-world experiments

1.4 System Description

A three level control hierarchy is implemented. At the lowest level, a high speed Stability
Augmentation System stabilises the roll, pitch and yaw of the quadrotor using data from the
IMU. At the second level, the Extended Kalman Filter fuses, incoming data from the camera
and IMU to generate accurate state estimates of the vehicle and maintains a map of the visual
features. At the third level, the state estimates from the data fusion filter are fed to a reactive
navigation algorithm which generates velocity and turn rate commands for the quadrotor to
safely traverse to a user selected location while avoiding obstacles.

1.5 Report Layout

Chapter 2 starts with a discussion of some of the successful algorithms developed by various
researchers and goes on to present an optical flow based methodology that is tested on a Parrot
A.R Drone quadrotor. A visual odometry system is also developed and examined. Chapter
2 discusses the motivation for choosing EKF-Based Visual SLAM and the reasons to build
a quadrotor. Chapter 3 presents EKF-Based Monocular SLAM which was used by me for
this project. Simulation and real time implementation results of monocular SLAM are also
discussed. Chapters 4 & 5 present the design, development and dynamical analysis of the
quadrotor. The paradigm of autonomous navigation will be presented in Chapter 6. Chapter
7 will discuss the System Architecture for autonomous operation followed by flight test results.
Finally the conclusions and discussion will be presented in chapter 8.
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Vision for Micro Aerial Vehicles

Considerable research has been conducted on the use of vision for navigation, localisation and
mapping. Angeli et al. [14] have demonstrated a visual loop closure system that uses shape
information in a scene to match it with a previously visited point. An optical flow balancing
based altitude control system for an MAV in indoor flight was demonstrated by Beyeler et al.
[17]. They treat altitude control as an obstacle avoidance problem using the ceiling and floor as
references. Garratt et al. [29] simulated an MAV navigating in a cluttered urban environment
using optical flow field measurements to calculate the Time to Contact to an obstacle. Their
work showed that a highly dynamic light weight MAV using only passive visual sensors could
safely navigate such an environment. Celik et al. [23] successfully implemented a monocular
vision based navigation, localisation and mapping scheme for a helicopter in structured indoor
environments using architectural features and employed the use of a particle filter based ap-
proach to SLAM. Tournier et al. [45] implemented a 6 DOF pose estimation algorithm based on
Moire patterns. Zing et al. [46] have used optical flow to navigate corridor like environments.
A visual odometry system that estimates the motion of a camera based on video input using
stereo correspondence has been developed by Nister [38]. It takes a purely geometric approach
which is solved using the 5 point algorithm and preemptive RANSAC described in Nister [37].

In this chapter, initial work that was carried out to study the feasibility of purely vision based
navigation and localisation is presented and discussed.

2.1 Optical Flow Based Navigation

During the initial stages of the project, vision based navigation was explored as a possible so-
lution to autonomous navigation for an MAV. It is relatively easy to implement and has been
demonstrated to operate in indoor environments by several researchers ([46], [17]). An algo-
rithm for optical flow based navigation is described here which was also tested on a commercial
quadrotor. This work was carried out to study the performance of a purely vision based ap-
proach to navigation in an unstructured indoor environment.

Method
This method works on the principal that when the MAV is translating, closer objects give rise
to faster motion across the imager than farther objects. Thus in this scheme, the MAV turns
away from the side of greater optical flow. In order to implement this method, the field of view
of the forward facing camera is divided into two halves i.e. left and right. The optical flow
field in the left half ~OFL and right half ~OFR are calculated using the Pyramidal Lucas-Kanade
feature tracking algorithm described by [21]. The control law is designed as:
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Ω =

∑
‖ ~OFL‖ −

∑
‖ ~OFR‖∑

‖ ~OFL‖+
∑
‖ ~OFR‖

(2.1.1)

Where Ω, further scaled by an appropriate factor, is fed as a yaw rate command to the
vehicle,‖ ~OF‖ represents the magnitude of optical flow. Fig. 2.1 shows the principle of op-
eration.

Figure 2.1: Navigating a corridor environment by balancing optical flow. In each visual hemifield up
to 200 features are tracked. dL and dR indicate the distance vectors from the camera optical centre to

obstacles on left and right

Experimental Setup

To test the vision based obstacle avoidance algorithm and verify its suitability for an MAV, a
Parror A.R drone (shown in Fig. 2.2) has been used for experiments. It is a lightweight quadro-
tor equipped with a forward looking 93 degree wide-angle diagonal lens camera, a downward
looking camera used for hover stabilisation and an ultrasound altimeter. The on-board IMU is
equipped with a 3 axis accelerometer and 3 axis gyro. All image processing algorithms are run
off-board on a ground control station which communicates with the MAV via a Wifi link. Fig.
2.2 shows the architecture of the set up. The image processing is done using a Python script
written using the OpenCV, open source image processing library. The interface between the
image processing script and the Wifi Link to the quadrotor is provided by the official Software
Development Kit provided by Parrot for the A.R Drone [4] and an open source library called
AutoPylot [3].

Using the experimental setup described in Figure 2.2, a test was conducted to verify the ro-
bustness of the optical flow balancing algorithm in an unstructured office environment. Figure
2.3 shows the images from the forward facing camera of the MAV. The blue circles represent
the corner features. The left and right green horizontal lines represent the optical flow in the
respective visual hemifields. The central green horizontal line depicts the direction and magni-
tude of the commanded yaw to avoid the obstacle. Image 1 and 2 show the MAV approaching
an open door, the central green line in image 2 shows the commanded yaw (i.e. to the left).
Image 3 shows the MAV turning away from the obstacle and image 4 shows that the MAV has
avoided the obstacle successfully.

It was seen that this optical flow based navigation system is capable of working in scenarios
where there is significant motion parallax between the left and right halves of the image. Since, it
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(a)

(b)

Figure 2.2: Experimental Setup: (a) Parrot A.R Drone (b)Control Flow

Figure 2.3: MAV flying in cluttered indoor environment. The blue circles represent corner features.

is this motion parallax, which generates the turn rate command. For a corridor like environment,
such an algorithm is perfectly suited to guide an aerial vehicle. A corridor provides distinct
features in the left and right halves (i.e. corner feature on left and right walls) which generate
significant motion parallax. Thus, the vehicle can always be commanded to maintain zero net
optical flow, which would guide the vehicle away from the walls. However, in situations where
there are large planar obstacles present directly in front of the camera, this algorithm is not
able to command a turn since both, left and right visual hemifields exhibit nearly identical
optical flow.

2.2 Visual Odometry

An algorithm was implemented based on the 5 point stereo correspondence algorithm developed
by Nister et al. [38] that estimates the motion of a camera based on video input. This gen-
erates visual odometry, i.e. motion estimates from visual input alone. The 5 point algorithm
like any other stereo correspondence algorithm (e.g. 8 Point Algorithm), helps calculate the
Fundamental Matrix for feature correspondence. This Fundamental matrix is a 3 × 3 matrix
which relates corresponding points in stereo pairs. If a camera is calibrated, then using its
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Intrinsic matrix, the Elementary matrix of the camera can be calculated for the relative poses.
The Elementary matrix contains information about the rotation and translation of the camera
between two poses (the translation is of-course not scaled). A detailed description of the math-
ematical solution for this method is beyond the scope of this thesis. The reader is referred to
[37] for a thorough understanding.

The key points in this method are:

1. Features are detected in each frame using the Shi-Tomasi corner detector [39]

2. These features are then matched and tracked between pairs of frames using the Pyramidal
Lucas-Kanade [21] optical flow tracking algorithm.

3. Using the corresponding features, relative poses between successive frames are calculated
using the 5-point algorithm [37]

The code for this method was written using a Python script and OpenCV. An open source
implementation of the 5 point method is available from the author’s web page [6]. Since I was
working with a monocular camera, scale estimation becomes a major drawback. Without the
correct scale, any SLAM algorithm cannot present a realistic description of its environments.
Therefore, it was decided not to use this algorithm for the SLAM implementation. Also, due
to the heavy computational load of this code, it is able to run only at frame rates up to 4 Hz.
Thus, it was felt that it would not be suitable for real-time implementation on a dynamic MAV.

2.3 Summary

Two purely vision based systems i.e. optical flow based navigation and stereo correspondence
based visual odometry were presented and discussed in the previous sections. Each has its
advantages and disadvantages. While the optical flow based navigation algorithm is suitable
for a corridor like environment, the visual odometry based system runs at a slow rate due to
computational complexity. This motivated the search for a solution, which would enable an
MAV to navigate and autonomously map an indoor environment. A careful literature survey
revealed that a filter based approach provides the best results for SLAM. Thus, an Extended
Kalman Filter based SLAM system, which can maintain an accurate 3D representation of the
environmental features as well as the vehicles pose in real time was investigated. Further, it was
felt that a commercial quadrotor platform like the A.R Drone did not have the required payload
capacity nor the quality of on-board instrumentation (inertial sensors, cameras) needed for this
research. Furthermore, commercial aerial platforms that could possibly be used for this project
are too expensive and provide limited flexibility in terms of payload. This led to the development
of an indigenous quadrotor platform. It was felt that building a quadrotor would provide several
advantages, namely; (i) Complete control over the sensory payload, (ii) Lowered development
cost, (iii) Software and hardware development expertise gained by various lab members, (iv)
Modular platform would be easy to replicate for further research.

This leads us to the proceeding chapters which investigate a monocular vision based EKF-SLAM
approach followed by the design and development of the quadrotor aerial vehicle. Further on,
the flight test results for the complete system are presented.
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Real-Time Monocular Vision based

Simultaneous Localisation and Mapping

In this chapter, Real Time Monocular SLAM is described, based on the methods developed by
Davison [28]. The advantage of this system is that it offers ‘Repeatable Localization’, wherein
there is minimal drift from the ground truth. The main aim of this method is to generate a
3D map of scene landmarks which can be referenced over a long time period whilst the camera
is in motion, within a probabilistic framework. This map should allow loop closure, i.e. re-
recognition of old features that had gone out view, when they are observed again by the camera.
Loop closure helps reduce the drift in the map. Researchers have adapted this methodology for
use in aerial vehicles. It has been used successfully by [41] for an airship, to aid navigation in a
situation where the vehicle loses GPS signals. Their paper demonstrates a heading only visual
SLAM based on Davison’s MonoSLAM which aids the Inertial Measurement Unit in keeping a
track of the vehicle’s attitude and position for short periods.

3.1 Methodology

Monocular vision based SLAM is a localisation and mapping method, that works by extract-
ing, storing and re-observing visual features detected by a single camera in motion. The global
positions of these visual features are stored as part of the map’s state. Since an EKF is used
here, these visual landmarks form part of the states of the EKF along with the states of the
camera (position, orientation, linear velocity and angular rates). The primary objective of the
map is to permit localisation rather than building a dense reconstruction of the environment.
Therefore,only a sparse set of high-quality landmarks is tracked. The scene is assumed to be
rigid and each landmark is assumed to be a stationary landmark. The visual landmarks are
assumed to map to a well defined feature in 3D space. The following sections will explain in
detail, how the visual SLAM method works, along with the key equations used in the imple-
mentation.
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3.1.1 The Filter State

The SLAM map is comprised of the EKF state vector x̂ which is basically the vertical stack of
state estimates of the camera (13 parameters) and features (6 parameters per feature).

x̂ =


x̂v
ŷ1
ŷ2
...
ŷn

 (3.1.1)

The camera’s state vector xv comprises:

• 3D position: rW

• Orientation quaternion: qWR

• Linear velocity: vW

• Angular velocity: ωW

relative to ‘W’ the fixed world frame and “robot” frame ‘R’ carried by the camera. The camera
state is represented mathematically as:

xv =


rW

qWR

vW

ωW

 (3.1.2)

In Eqn. 3.1.1, yi is the state of feature ‘i’, where i ∈ [1, n], which represents the 3D position
vector Pi = [Xi, Yi, Zi]

T of the location of the point feature in the world frame using inverse
depth parametrisation [24].

A feature is represented in the map by using the inverse depth representation described in [24],
as follows:

yi =


xci
yci
zci
θi
φi
ρi

 (3.1.3)

The position vector Pi of the feature in 3D space, is expressed mathematically in terms of the
inverse depth parametrisation as:Xi

Yi
Zi

 =

xciyci
zci

+
1

ρi
m(θi, φi) (3.1.4)

Where,
m = [cos(φi)sin(θi),−sin(φi), cos(φi)cos(θi)]

T (3.1.5)

[xci, yci, zci]
T is the position of the camera centre when the feature is first observed, ρi is the

inverse depth of the feature along the ray joining the camera centre to the feature and m(θi, φi)
represents the unit vector in that direction as a function of the azimuth and elevation.
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3.1.2 Feature Initialisation

As explained in the previous sub-section, the features are represented in the map using inverse
depth parametrisation. The inverse depth parametrisation only contains information about the
feature’s position whereas the SLAM system must be able to uniquely identify each feature to
be able to recognise them successively from the stream of camera images. Since, this a vision
based system, a feature’s visual appearance is the sole information that the camera can provide.
Therefore, instead of tracking corner features, relatively large image patches (for e.g. 21 × 21
pixels) are tracked, as they are distinct which makes them stable landmarks. The process for
feature initialisation starts by, first, detecting a corner feature in the camera image via the Shi-
Tomasi [39] detector after which a 21 × 21 pixel image patch, centred at the corner feature is
extracted. The extracted patch image is stored as a feature’s descriptor in the SLAM system’s
memory. This patch image is stored only once when a feature is initialised after which it is not
updated. An approximation is made that a feature is locally planar. If this approximation does
not hold true, then as the feature is re-observed, it is not matched correctly during the update
step of the Kalman filter. In such a case, the feature is deleted based on a threshold criterion
of its cross-correlation score while matching with the original stored image. This threshold is
determined heuristically.

Once the feature point is extracted from the image, it is mapped from the 2D image plane
coordinates [u, v] to normalised 3D world coordinates [U, V, 1] as:(

U
V

)
=

(
(u− u0)/fku
(v − v0)/fkv

)
(3.1.6)

where fku, fkv, u0, andv0 are the standard camera calibration parameters. To orient the vector
[U, V, 1] along the world frame, it is rotated by the rotation matrix RWR. Thus, the direction
vector from the camera centre to the landmark in world frame is given by:


hWLx

hWLy

hWLz

 = RWR

UV
1

 (3.1.7)

After the feature is extracted, it is inserted into the map i.e. the filter state and covariance need
to be modified. The map’s state vector simply expanded to accommodate the 6 parameters
of a new feature. The feature’s covariance is initialised using the image measurement error
covariance Ri and state estimate covariance P̂k|k. The initial value of the inverse depth ρ0
and its standard deviation σρ is set based on trial and error. For the experiments carried out,
ρ0 = 0.25 and σρ = 0.5. This gives an inverse depth confidence region of [−0.75, 1.25]. This
confidence region covers a depth of infinity as well. The filter state covariance (from [24]) is:

P̂newk|k = J

P̂k|k 0 0
0 Ri 0
0 0 σ2

ρ

 JT (3.1.8)

Where,

J =

 I 0

∂y
∂rW

, ∂y
∂qW

, 0, ..., 0 ∂y
∂h ,

∂y
∂ρ

 (3.1.9)
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3.1.3 Motion Modelling

The state vector is updated in two ways i.e.; 1) Prediction: i.e. when the camera moves in the
interval between image capture and 2) Update: i.e. after features are measured. For a camera
undergoing motion, the motion model has to account for the random dynamics of the camera.
These can be probabilistically modelled. For a camera without odometry, a “constant velocity,
constant angular velocity model” is used similar to that used in [28]. It does not restrict the
camera motion, but implies that undetermined accelerations occur with a Gaussian profile.
Necessarily, it expects smooth dynamics for the camera: big accelerations are assumed to be
unlikely.

For each time step, unknown acceleration aW and angular acceleration αW are assumed to
be processes of zero mean Gaussian white noise, which apply a velocity and angular velocity
impulse:

n =

(
VW

ΩW

)
=

(
aW∆t
αW∆t

)
(3.1.10)

The covariance matrix of the noise vector n is assumed to be diagonal. Qv, the process noise
covariance is calculated as:

Qv =
∂fv
∂n

Pn
∂f Tv
∂n

(3.1.11)

where Pn is the covariance of noise vector n. The state update produced is:

fv =


rW + vW∆t

qWR × q((ωW + ΩW )∆t)
vW + VW

ωW + ΩW

 (3.1.12)

The rate of growth of uncertainty in the motion model is determined by the size of Pn and
the values of these parameters dictate the smoothness of the motion expected. Setting a high
standard deviation to the expected angular and linear impulses increases the uncertainty at
each update, which must be handled by a large number of good feature matches. On the other
hand, a small standard deviation for the impulses would imply smooth motion for the camera,
in which case the filter can become unstable if the camera moves suddenly. For this work, the
standard deviation for linear impulse was set to a = 1 m/s2, for angular acceleration it was set
to α = 1 rad/s2. If, there is an Inertial Measurement Unit present, then these parameters can
be simply set to the noise characteristics of the sensors as specified by the manufacturer.

3.1.4 Map Initialisation

When the robot is switched on, it doesn’t have knowledge about the the world around it. A
coordinate frame is defined by the robot wherein it will determine its own motion and build a
map, therefore the most logical choice is to place the origin at the robot’s starting position. At
start-up, a minute amount of information can be given in the form of a known target in front
of the camera if the camera does not have access to odometry. This is able to provide several
features with known positions and of known appearance. There are two main reasons for this:

• Since there is no direct way to measure feature depths, a known target allows the system
to assign a precise scale to the estimated map
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• Having features right from the beginning implies that the robot can immediately enter
the normal ‘predict-measure-update tracking sequence’ without any special first step

If there is an IMU present, the map gets scaled automatically when measurements are read
from the accelerometer and fused in the EKF.

3.1.5 Feature Measurement and Updating the Map

The location of a landmark relative to the camera is calculated using the estimates, rW of
camera location and Pi of feature location:

hRL = RRW (PWi − rW ) (3.1.13)

Where,

hRL : Vector from the the camera centre to the feature in the camera’s body frame
RRW : Euler rotation matrix of the camera

The standard pin hole model allows the calculation of the position (u, v) at which the feature
would be expected to be found in the image:

hi =

(
u
v

)
=


u0 + fku

hR
Lx

hR
Lz

v0 + fkv
hR
Ly

hR
Lz

 (3.1.14)

Feature matching is performed on raw images rather than undistorting them. The projected
coordinates u = (u, v) are radially distorted to obtain the final predicted image position ud =
(ud, vd). A two parameter radial distortion model from [34] is used. First ru and rd are
calculated as follows:

ru = rd(1 +K1r
2
d +K2r

4
d) (3.1.15)

ru can be directly calculated as,

ru =
√

(u− u0)2 + (v − v0)2 (3.1.16)

However, rd is iteratively calculated using the Newton-Raphson Method. (Steps 1 through 3
are repeated 10 times) as:

1. Calculate f :
f = rd +K1r

3
d +K2r

5
d − ru (3.1.17)

2. Calculate fp :
fp = 1 + 3K1r

2
d + 5K2r

4
d (3.1.18)

3. Calculate rd as:

rd = rd −
f

fp
(3.1.19)

4. Repeat from step 1 ten times

The distorted coordinates are then:

ud − u0 =
u− u0

(1 +K1r2d +K2r4d)
(3.1.20)
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vd − v0 =
v − v0

(1 +K1r2d +K2r4d)
(3.1.21)

Where K1 and K2 are the radial distortion parameters obtained from camera calibration. The
Jacobians of this two-step projection function with respect to camera and feature positions give
the uncertainty in the prediction of the feature position, represented by the symmetric 2 × 2
innovation covariance matrix Si :

Si =
∂udi
∂xv

Pxx
∂udi
∂xv

T

+
∂udi
∂xv

Pxyi
∂udi
∂yi

T

+
∂udi
∂yi

Pyix
∂udi
∂xv

T

+
∂udi
∂yi

Pyiyi
∂udi
∂yi

T

(3.1.22)

The measurement noise covariance Ri is a constant, with the diagonal elements equal to the
image noise in pixels. The standard deviation for image noise is assumed to be 0.8 pixels. Si
is of the shape of an ellipse representing a 2D Gaussian Probability Distribution Function over
image coordinates and choosing the standard deviations (usually 3σ) defines an elliptical search
region where there is maximum probability of finding the feature.

Si provides a measure of how valuable a measurement is; for e.g. feature searches with high
Si (where the result is difficult to predict) will provide more information about estimates of
camera and feature positions.

At each measurement step of the Kalman Filter, the measurement hypothesis are tested by
projecting them as an elliptical search region onto the image. After the 3D point is projected
into the image using the standard measurement model, the innovation covariance provides the
elliptical search area where the feature is most likely to be found. Within the elliptical search
area, the SLAM filter tries to match the initial patch image stored in the map to the one
extracted from the current image. Normalized cross-correlation search is used to match the
template of the stored patch to the possible patches within the search region. If the correlation
score exceeds a threshold of 0.8, the feature is said to have been measured successfully and its
confidence level is increased by 1. In case the correlation score falls below 0.6, the measurement
is considered bad and the confidence level of the feature is decreased by 1. A low correlation
score can be attributed to an occlusion or the feature not being distinct enough, which makes
it unsuitable for the SLAM map. If the correlation score falls between these two thresholds
then the feature’s confidence level is unaffected. The confidence level of a feature is basically
a numerical value which is affected by the measurement of that feature. The confidence value
helps in deciding which features are to be kept in the map and which are to be deleted. If a
feature’s confidence value falls below zero, it is deleted from the SLAM filter. If the number of
matched features falls below a threshold (usually 4-6 features) then new features are searched
for in the image, in regions where the camera is not predicted to observe any past features.

3.2 Algorithm Implementation

A real time C++ code has been developed implementing Monocular SLAM using an Extended
Kalman Filter based on the methodology described in the previous section. The main steps of
the algorithm are as follows:

1. Initialise the camera state vector and covariance based on an initial estimate of the position
and uncertainity. In our case the starting position is assumed to be (X = 0, Y = 0, Z = 0)
and the camera coordinate frame is assumed to be oriented along the world frame

2. Acquire image from camera and convert it to grayscale for fast processing

3. Extract feature patches (of size 21×21) using Kanade-Lucas-Tomasi (KLT) detector. The
number of features tracked is key in deciding the accuracy of the system. More features
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result in higher accuracy but slower performance. A compromise must be reached between
performance and accuracy

4. Predict new feature position based on current motion estimates of camera

5. Active search of features within search region defined probability distribution

6. Match features by patch cross correlation (min. correlation score 0.8 for successful match).
A track is kept of the number of times a features is matched which affects the confidence
level of each feature as described in section 3.1.5

7. Update Kalman filter using the matching observations

8. Render 2D and 3D graphics for visualisation (optional)

9. If the number of matched features falls below a certain predefined threshold (usually 6
features), new features are added in regions of the image which previously do not contain
features.

10. Start over from step 2

Initial Pos.
Estimate
+ Cam

Parameters

Initialize
Filter
at t=0

Feature
Extraction

Kalman
Filter:
Predict

Active
Search:
Match

by Cross
Correlation

Kalman
Filter:
Update

Decision:
Search New

Features
or Not

Camera
Motion

Acquire
Monochrome

Image

Figure 3.1: Flowchart depicting the main steps of the algorithm
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3.3 Simulation Performance

The table below gives a break down of the processing time for the code with a minimum of
12 features in view. It shows that the current implementation can easily run at 25 Hz which
is sufficient for real time SLAM. An increase in the performance can be attained via code
optimisation and skipping the graphical rendering step.

Table 3.1: Average Processing Time for Different Stages of the Algorithm: Real Time

Step Time (ms)
Image Acquisition 2

Feature Correlation Search 2
Kalman Filter 29

Feature Initialisation Search 3.5
Graphical Rendering 1.75

Total 38.25

3.3.1 Accuracy

The accuracy of the system was tested against the results generated by the MATLAB code
provided by Civera et al. [25]. Their implementation is currently the state of the art in EKF
based monoslam. The position and orientation were compared for a sequence of images for
camera motion of 130 seconds. Table 4.2 presents the position estimates from the two at every
10 seconds.

Table 3.2: Localisation accuracy

Ground Truth SLAM (m)
x y z x y z

-0.1268 0.0416 0.0372 -0.1336 0.0509441 0.0531847
-0.2821 0.0644 0.0277 -0.278938 0.0759559 0.0536762
-0.3839 0.0651 0.0181 -0.418046 0.075778 0.0415132
-0.3628 0.0437 0.0267 -0.395185 0.0480599 0.0825013
-0.2388 0.0295 0.0445 -0.245275 0.0310467 0.0626606
-0.0941 0.0100 0.0341 -0.103298 0.00984878 0.0561518
-0.0179 -0.0250 0.0102 -0.0204742 -0.0260352 0.0387348
-0.0330 -0.0564 0.0047 -0.0327291 -0.0743485 0.067596
-0.1090 -0.0473 0.0157 -0.142783 -0.0713295 0.0745398
-0.2212 -0.0187 0.0146 -0.310985 -0.0292691 0.0839611
-0.3279 -0.0043 -0.0292 -0.39637 -0.0111663 0.0803065
-0.3482 -0.0176 -0.0705 -0.378851 -0.0231401 0.0244458
-0.3000 -0.0262 -0.0742 -0.312162 -0.0206843 -0.0192843

Table 4.3 presents the position mean and standard deviation of the error between the values
from [25] and my code. It can be seen that the positioning accuracy is very reliable and the
order of error in centimetres. It is clear that once IMU data is fused with the Kalman filter,
the positioning accuracy will become even more accurate and we can hope to limit the error
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for long trajectories.

Table 3.3: Mean and Standard Deviation of Error
x(m) y(m) z(m)

Mean 0.0249 0.0018 -0.0493
Standard Deviation 0.0279 0.0109 0.0302

m

Figure 3.2: Sequence of images from simulation

Fig 4.2 shows the key frames at which the localisation values were compare and Fig 4.3 depicts
the 3 dimensional path of the camera.
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Figure 3.3: 3D path reconstruction

3.4 Improving IMU performance with Visual SLAM

Here are presented the results of the work published in a paper based on the work done as
part of this project. A software framework was developed to test the proposed SLAM system.
The virtual world is populated with 3D landmarks. The Kalman filter is initialised with a high
uncertainty. Figure 3.4, 3.5 and 3.6 show the true position and the estimates from the IMU
and the vision aided filter. Figure 3.7, 3.8 and 3.9 show the orientation estimates error from
the IMU and the vision aided filter. It is clear that visual measurements enhance the accuracy
of the odometry. As time progresses the Kalman filter is able to accurately determine the state
of the vehicle. The IMU readings exhibit continuous divergence from the true value whereas
the filtered estimates have considerably less error. Compared to the position error the heading
error is slightly higher but still within reasonable bounds.

Figure 3.4: Vehicle position along X axis
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Figure 3.5: Vehicle position along Y axis

Figure 3.6: Vehicle position along Z axis

Figure 3.7: Vehicle Orientation in Roll (φ)
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Figure 3.8: Vehicle Orientation in Pitch (θ)

Figure 3.9: Vehicle Orientation in Yaw (ψ)

3.5 Real-Time SLAM

Finally, the performance of the algorithm was tested in real-time using a standard webcam.
The camera was moved along a rectangle of side 16 cm × 10 cm on a flat surface in a 67 second
run (the principal axis of the camera is not perfectly aligned with the physical rectangle, which
accounts from the alignment error of the rectangle in the 3D path reconstruction from the
X-Y plane i.e. the surface). The error between the starting position and end position in the
localisation is 2.63 cm. Fig. 3.10 shows the path reconstructed as the camera was moved along
a rectangle.
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Figure 3.10: 3D Path

Figure 3.11: X vs. Time
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Figure 3.12: Y vs. Time

Figure 3.13: Z vs. Time
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3.6 Summary

The key points of this approach are that it is able to model the motion probabilistically, while
enabling an active measurement of the landmarks. It is highly efficient and robust to randomness
of the camera dynamics and at the same time is capable of loop closure. Compared to other
SLAM algorithms that use Rao-Blackwellised Particle Filter based approaches like [36] and [44],
Davison’s method uses an Extended Kalman Filter. While an EKF based approach cannot be
used for a big map, it is certainly better at tracking since its means the non-diagonal covariance
relationships are maintained in the SLAM filter. These relationships are highly useful as each
features observation affects the rest of the features. Its limitation is that as it relies on an
EKF to maintain the state estimates, high number of features tend to increase the complexity
of the calculations which makes this system only suitable for small environments. However, it
is possible to extend the algorithm for large scale environments by introducing some form of
intelligent map management. It has been shown in other work on submaps that a system of
small scale maps can be successfully joined by a set of estimated transformations as long as the
submaps can be matched accurately. Clemente et al. [26] have published a paper on mapping
large outdoor loops using a single camera SLAM system running an EKF by building and
storing small individual local maps in real time and then associating them in the background.
This chapter has described the algorithm and its performance characteristics. It is proven that
that the speed of the algorithm is suitable for accurate real time SLAM. The accuracy is then
verified by the simulations and real-time test. The algorithm successfully implemented loop
closure which is crucial to enhance localisation estimates as landmarks are re-observed. This
key feature enables long term accurate tracking. Using inverse depth parametrisation for feature
initialisation, feature depth uncertainty is successfully reduced and estimated within seconds.
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Design and Development of Quadrotor

4.1 Introduction

A thorough survey of commercially available MAVs for the purpose of this research revealed
that the only suitable system was the Pelican quadrotor as shown in fig. 1.4. However, the
cost of the entire system exceeds 15,000 GBP which was beyond our budget. Hence, it was
decided to build a quadrotor in-house using COTS components from various suppliers. This
way, the cost of the entire system has been brought down to less than half of the commercially
available system. The second major advantage of building such a complex system in-house is
that it helps build the capability for systems integration within the group and future projects
will benefit from the plug and play capabilities developed in this project.

4.2 Baseline Specifications

For the purpose of building this quadrotor, certain basic requirements were specified, namely:

1. Flight time of approximately 10 minutes

2. Ability to carry approximately 500 grams of payload (LIDAR , Single Board Computer,
camera)

3. Easily repairable

4. Modular construction which can be easily replicated

These specifications were loosely based on the performance of the Pelican quadrotor as adver-
tised by Ascending Technologies [5] and tailored to meet our expectations from the MAV. An
initial estimate of the expected mass breakup is shown in Table 4.2.
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Table 4.1: Expected Weights

Component Mass (g)
Frame 350
Motors 220

Main Battery 500
Secondary Battery 200

IMU 50
Arduino 40

Xbee Module 30
Wiring 100

Single Board Computer 300
R/C Receiver 20

LIDAR 165
Electronic Speed Controllers 120

Miscellaneous Structural Components 200
Sonar 5

Camera 25
Total 2325

4.3 Hardware Description

To meet the baseline specifications, a survey of available products revealed the most suitable
and easily available components as described below :

4.3.1 Frame

A standard quadrotor frame and landing gear designed for heavy payloads was purchased from
Hi-Systems GmbH. Carbon fibre and polyvinyl carbonate sheets were used to mount the IMU
and stability controller, laser scanner and on-board computer. To mount all the sheets onto
the centre plate, double angle strips available from Meccano were used.

The quadrotor includes the following major structural components (excluding nuts/bolts):

1. 4 Aluminium arms with dimensions 29 cm × 1 cm × 1 cm and a thickness of 1 mm
weighing 25 gm each.

2. 2 Polycarbonate Discs with a diameter of 18 cm and thickness of 1 mm for use as the
centre plates weighing 10 gm each

3. Plastic landing gear weighing 85 gm.

4. 1 carbon fibre sheet with dimensions 15 cm × 18 cm × 0.2 cm weighing 35 gm

5. 1 carbon fibre sheet strengthened with a polyvinyl carbonate sheet with dimensions 13
cm × 7.5 cm × 0.2 cm weighing 40 gm

6. 4 double angle strips 5 × 2 holes weighing 8 gm each and 6 double angle strips 7 × 1 hole
weighing 10 gm each from Meccano

7. 1 carbon fibre sheet with dimensions 11 cm × 9 cm × 0.1 cm weighing 10 gm
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(a) (b)

Figure 4.1: Components purchased from Hi-Systems GmbH (a) Quadro-XL kit (b) MK
FlexLanderXL

4.3.2 Propulsion

Propeller

An initial design revealed that the weight of the system would be close to 2.35 kg. This meant
that each motor must provide a minimum of 5.77 N of thrust to hover. However, a margin
of safety must be available to accommodate the changes in the design weight. We assumed a
30 % thrust margin. therefore approximately 30 N of maximum available thrust was needed.
After studying various manufacturer websites and online resources such as Aeroquad [1] and
DIY Drones [7], it was realised that APC Slow Fly propellers are most commonly used for slow
flying heavy lift duties such as the one required on this system.

The equation below states the relationship between propellers sizes and their maximum RPMs
as suggested by the manufacturer [2]. The Slow fly APC props should ideally not be used close
to their maximum RPM as their efficiency drops drastically due to blade tip stall and it is also
not safe to operate them beyond the manufacturer specified limit.

MaxRPM =
65000

PropDia(inches)
(4.3.1)

An analysis of various propeller sizes revealed that a 12 x 3.8 APC slow fly prop would be ideally
suited to this application as it could generate the required thrust at low power consumption.

Table 4.2: Propeller performance

Propeller Max RPM RPM @ required max. thrust Power @ required max. thrust (W)
10 × 3.8 6500 6330 71.4
11 × 3.8 5909 5720 69.9
12 × 3.8 5416 4762 61.2

Motor and Speed Controllers

DC brushless motors are ideal for model aircraft applications as they are lightweight, durable
and highly efficient. Dualsky XM2830CA-10 brushless motors were chosen. It is a lightweight
(55 gm) motor, capable of running large propellers and a maximum power output of 200 W.
The motors were paired with Dualsky XC1812BA Electronic Speed Controllers (ESC) which
read PWM signals from the stability computer and in-turn controls the motor RPM.
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(a) (b)

(c)

Figure 4.2: (a) APC 12 × 3.8 Propeller (b) Dualsky XM2830-CA 10 Brushless DC Motor (c)
XC1812BA ESC

4.3.3 Power

Lithium Polymer batteries are most commonly used to power small scale models. A Kong-
Power 3 Cell Li-Po battery was chosen with a rating of 5100 mAh as it was the best available
model in the market that met the power requirements and weight considerations (454 gm).

Figure 4.3: Li-Po battery packs

4.3.4 Sensors

1. Laser: We use a short range Hokuyo URG-04LX as it is most suitable for our application.
With a range of 4 m and weight of 165 gm, it is one of the lightest laser scanner available
in the market and commonly used for aerial and ground robots. Since we do not aim to
localise using scan matching, the range of this scanner is sufficient for our purpose.

2. Camera: A Unibrain Fire-i Monochrome Digital Board Camera was chosen for the plat-
form. It is one of the most popular cameras used SLAM research as it can be outfitted
with various kinds of lenses (e.g. wide-angle) and it provides a high data rate using
FireWire at 400Mbps. It progressively scans each frame which leads to reduced motion
blur during fast dynamic motion compared to normal CMOS sensor based cameras. This
reduced motion blur helps in matching feature appearance during dynamic motion of the
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Figure 4.4: Hokuyo URG-04LX 2D Laser Scanner [8]

camera. Its dimensions are a mere 59 × 53.5 × 19.5 mm and it weighs 35 grams. It is
used in conjunction with a wide-angle lens with focal length 2.1 mm and horizontal Field
of View of 81 degrees and vertical field of view of 60 degrees.

Figure 4.5: Unibrain Fire-i board camera [12]

3. IMU: Nowadays there are a number of MEMS based Inertial Measurement Units readily
available in the market. For aerospace applications however, there are only a few com-
panies whose products match the performance required for building a SLAM application.
Since, the MAV will be flying indoors only GPS integration was not one of our criterion.
Based on price comparison, and overall performance the SBG Systems IG-500A IMU was
chosen. It runs an on-board Kalman Filter with a max. update rate of 180 Hz and fuses
magnetometer, accelerometer and gyroscope readings to calculate the vehicle orientation.
It is able to run in polling and continuous data transmission mode and comes with a
software development kit that can be used to develop low-level communication protocols.

Figure 4.6: Block Diagram of IG-500A functioning [11]

4. Sonar: A MaxSonar LV-EZ0 ultrasonic range finder was selected as the altitude sensor.
It has a maximum range up to 20 feet and works on a a negligible amount of power ( 0.05
W). It can output data as analogue voltages, pulse width signals and serial data.

4.3.5 Radio Controller

A Spektrum AR7000 2.4 Ghz 7 channel digital receiver was chosen to be used with a MacGre-
gor/JR DSX-12 2.4 Ghz digital transmitter. The receiver provides all the requisite channels
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Figure 4.7: SBG Systems IG-500A MEMS IMU [11]

Figure 4.8: MaxSonar LV-EZ0 ultrasonic range finder

for Throttle, Roll, Pitch, Yaw control and 3 mode settings viz. Altitude Hold on/off, Autopilot
on/off, Take-off / Landing.

(a) (b)

Figure 4.9: (a) 12 Channel Transmitter (b) 7 Channel Receiver

4.3.6 Wireless Communication

Wireless communication forms an integral part of the quadrotor. It is used to transmit mission
critical information (vehicle states etc.) to the Ground Control Station and receive commands
from it. The most common and easy to use devices are Xbee modules which run on the
ZigBee communication protocol. They are easy to set up and work as plug and play devices. 2
Xbee pro 2.4 Ghz transmitter/receiver devices along with an Arduino shield and PC connector
dongle were acquired. One device is integrated with the Arduino board using the Xbee shield
specifically designed for the Arduino Mega. The second module is connected to the PC via
the USB Xbee explorer. The maximum available data rate is 57600 bps which is sufficient
for wireless telemetry. Fig. 4.10 shows the various components of the wireless communication
system.

4.3.7 Stablity Controller

A stability controller is the most crucial system in keeping the vehicle in the air. It must be
able to run the real-time PID control loops to maintain the commanded yaw, pitch and roll.
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(a) (b) (c)

Figure 4.10: (a) Xbee Arduino Shield (b) Xbee Pro TX/RX module (c) Xbee explorer

An Arduino Mega 2560 based on an ATMEL ATMEGA 2560 microcontroller was selected for
this purpose. It is an open source platform which has numerous in-built functionalities such
as PWM generation, Serial Communication etc. which can be taken advantage of for rapid
development of the control system. It is sufficiently fast to run the stability loop at 150 Hz.

Figure 4.11: Arduino Mega 2560

4.3.8 Computing

The high level on-board computer runs the crucial SLAM algorithms and data fusion to calculate
accurate state estimates. Since image processing is a highly computationally intensive job, a
powerful, compact computer was needed for this purpose. After testing the SLAM algorithms
in simulation on a PC, it was realised that to maintain real-time performance at 25 Hz, a
minimum configuration equivalent to the PC would be required. After an exhaustive search,
a Single Board Computer NANOGM45-A2 by Impulse Corporation was finalised. It carries
an Intel Core2Duo 2.45 GHz processor, with 2 GB of RAM. With some modifications to the
operating system i.e. suspending background tasks, adequate real-time performance can be
achieved. The drawback of this device is it’s high power consumption with a max. rating of
3.06 A at 12 V ( 36 W). The entire module weighs approximately 0.250 kg without a cooling
fan and 0.3 kg with cooling.
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Figure 4.12: Single Board Computer

4.4 Weights Analysis of Purchased Components

Table 4.4 show the measure weights of the purchased components. It can be see that the final
weight of the vehicle is very close the expected weight distribution given in Table 4.2.

Table 4.3: Weights

Component Mass (g)
Frame* 318
Motors 248

Main Battery 428
Secondary Battery 192
IMU Assembly** 88

Arduino 37
Xbee Module 32

Wiring 102
Single Board Computer 264

R/C Receiver 17
LIDAR 165

Electronic Speed Controllers 108
SBC base plate 40

LIDAR base plate 50
Brackets 80

Sonar 3
Propeller 17 (per prop)

Total 2240

*Frame: includes centre plates, landing gear, battery holder, arms and nuts/bolts
**IMU Assembly: includes MEMS IMU, logic level converter, carbon fibre mounting plate

***Camera not included
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4.5 Computer Aided Design

A CAD model was made using CATIA v5 to model the inertial parameters accurately and form
a graphical representation of the intended product. This step is crucial to the development as it
allows us to model the structural parameters of the quadrotor precisely and any modifications
to the hardware can be updated in the CAD model which allows us to quickly compute the
updated inertial parameters.

Fig. 4.13 shows the computer generated model of the quadrotor.

Figure 4.13: CATIA model of quadrotor

Table 4.4: Inertial Parameters
Parameter Estimated Value (kg ·m2)

Ixx 0.034
Iyy 0.034
Izz 0.035
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Quadrotor Modeling & Control

5.1 Quadrotor Basics

The quadrotor design has four fixed-pitch propellers in cross configuration. Driving the two
pairs of propellers in opposite directions removes the need for a tail rotor. Consequently, vertical
rotation is achieved by creating an angular speed difference between the two pairs of rotors.
Increasing or decreasing the speed of the four propellers simultaneously permits climbing and
descending. Rotation about the longitudinal and the lateral axis and consequently horizontal
motions are achieved by tilting the vehicle. This is possible by conversely changing the propeller
speed of one pair of rotors. In spite of the four actuators, the quadrotor remains an under-
actuated and dynamically unstable system. In fact, MAV class quadrotors require a very small
rotor diameter which is very penalizing in terms of efficiency. However, the inherent simple
mechanics of quadrotors and the increased payload are their main advantage in the MAV class.

Figure 5.1: Quadrotor Principle
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The method followed here was to first identify the components to be used by working with the
baseline specifications and product data sheets. Once that was achieved, the individual compo-
nents were purchased and assembled. The inertial parameters of the vehicle were determined
for dynamic modelling using the CAD model and only the dynamics of the actuators which
are important in the case of a quadrotor were identified. This approach makes it easy to build
dynamic models of unstable systems, since we do not have to perform closed loop identification
in flight. Newton-Euler formalism was used to model the dynamics of the vehicle (Appendix A).
Blade Element Theory and Momentum Theories were used to model the BumbleBee quadrotor.
A detailed description of the dynamic modelling and derivation of the equations of motion is
provided in Appendix B.

5.2 System Identification

Before, the quadrotor can be simulated in a virtual environment, certain characteristics of its
dynamics need to be identified. These include, the Thrust and Drag factor, motor dynamics
and body inertial matrix. The more accurately these parameters are identified, the closer the
model behaves to the real system.

5.2.1 Inertial Parameters

The hardware integration was conducted in CATIA to build a close-to-reality representation
of the final product. It enabled calculation of the inertial parameters which are required for
dynamic modelling and simulation. The total mass of the quadrotor is 2.297 kg which is very
close to the initial design weight.

Table 5.1: Moments of Inertia
Parameter Estimated Value (kg ·m2)

Ixx 0.034
Iyy 0.034
Izz 0.035

5.2.2 Aerodynamics

Here, the methods used to identify the aerodynamic parameters (b-Thrust factor & d- Drag
Factor) for the BumbleBee quadrotor are described. The propeller’s rotation generates lift and
drag which contribute to the dynamics of the vehicle. The thrust generated is used to control
the roll and pitch motion whereas the drag generated contributes to the yaw.

A test rig was set up to measure the thrust generated by the propellers in a static condition.
The motor was bolted to a heavy block of wood as shown in Fig. 5.2. Then, this block was
placed on a weighing machine and the propeller RPM was varied over a wide range. The change
in the reading of the weighing scale gives a direct measure of the propeller thrust.
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Figure 5.2: Motor bolted to wooden block as part of thrust testing rig

From Blade Element Theory as described in Appendix A, the lift generated by a propeller is
described by Eqn. A.2.9 stated here again for clarity. It shows clearly that the thrust is directly
proportional to the square of the angular velocity of the prop.

L = NBρAacω
2
pR

3
p(
θI0
6
− θtw

8
− λ

4
) (5.2.1)

Fig. 5.3 shows the measured values. It is seen that the thrust is related linearly to the PWM
signal value. From this, it can be inferred that the square of the angular velocity should have a
linear relationship with the Pulse Width Modulation (PWM) signal value (duty cycle [µs]) as
well. Fig. 5.4 reveals that indeed, that is true.

Figure 5.3: Thrust vs. PWM
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Figure 5.4: ω2 vs. PWM

Figure 5.5: Thrust vs. ω2

The thrust factor b, can be written as :

b =
L

ω2
p

= NBρAacR
3
p(
θI0
6
− θtw

8
− λ

4
) = 2.998× 10−5[N · s2] (5.2.2)

To estimate the drag factor d, it is necessary the describe the torque acting on the shaft as
a function of the angular speed. The relationship is derived from fundamental aerodynamic
calculations in Eqn. A.2.11 is stated here again.

Q = NBρAacω
2
pR

4
p(
CD
8

+ aλ(
θI0
6
− θtw

8
− λ

4
)) (5.2.3)

The drag coefficient CD was estimated from [20] as 0.05. λ is the inflow ratio calculated from
momentum theory as described in Eqn. A.1.8.
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{
λ = vi

ωHRP

WP = 2ρaAv
2
I

(5.2.4)

Where, ωH is the angular speed of the blade in hovering condition and RP is its radius. WP is
the weight carried by one propeller, ρa is the air density, A is the disc area of the propeller. λ
is calculated from the the experimental data to be 0.0215. Thus, the drag factor d is estimated
to be :

d =
Q

ω2
p

= NBρAacR
4
p(
CD
8

+ aλ(
θI0
6
− θtw

8
− λ

4
)) = 1.742× 10−6[N ·m · s2] (5.2.5)

5.2.3 Motor Dynamics

The motor dynamics can be modelled as a first-order transfer function between the propeller’s
set point and its true speed. This assumption was validated with an experimental setup using
a laser tachometer as shown Fig. 5.6. The setup consists of a handled tachometer used to
focus a beam of laser onto a highly sensitive photo-transistor whose output is connected to a
highly sensitive oscilloscope. The photo-transistor circuit’s output voltage goes high when the
blade of the propeller interrupts the laser beam. Thus in this way, the dynamic response can
be recorded and post processed using the Matlab System Identification toolbox.

Figure 5.6: Motor dynamic response testing rig

From the data, the transfer function was identified as,

G(s) =
0.9939

0.31744s+ 1
(5.2.6)
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Figure 5.7: Propeller angular velocity as seen on oscilloscope

Figure 5.8: Propeller dynamic response

5.3 Controller Development

The dynamic model presented in Eqn. B.3.18 contains gyroscopic effects and rotational cou-
pling. These effects can be neglected in a near hover situation as the effect of the thrust and
drag action is more significant. In order to design multiple PID controllers for this system,
once the gyroscopic effect and cross-coupling are removed, the attitude and altitude equations
described in Eqn. B.3.18 can be re-written as,

φ̈ = U2

Ixx

θ̈ = U3

Iyy

ψ̈ = U4

Izz

Z̈ = −g + cos(θ)cos(φ)U1

m

(5.3.1)
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The quadrotor attitude control systems uses a cascading PID controller for roll and pitch
stabilisation. Cascading PID has been shown to have a faster response to control inputs. It
can be mathematically proven that the working frequency of the controller is increased and the
time constant of the object is reduced by using cascaded PID controller.

Fig. 5.9 shows the cascading PID controller used for roll (φ). Fig. 5.10 shows a PID controller
used for Yaw. The vehicle dynamics block also contains the actuator dynamics.

Figure 5.9: Cascading PID controller used for roll and pitch stabilisation

Figure 5.10: Simple PID controller used for yaw stabilisation

5.3.1 Simulation Results

1. Roll: A cascading PID controller was simulated with the model described in Eq. 5.3.1
using the system parameters as identified in the various tests in section 6.2. The controller
was commanded to drive the vehicle to a roll angle of 10 degrees. Fig. 5.11 shows the
simulation results

The paramaters for the first controller G1 are KP = 2.3, KI = 0, KD = 0 and for G2 are
KP = 0.9, KI = 0, KD = 0.09. Since the quadrotor is symmetrical about the X and Y
axes, the control gains are the same for roll and pitch.

2. Yaw: A PID controller was simulated for yaw rate command tracking. Fig. 5.12 shows
the simulation result for tracking a yaw rate of 10 degrees per second.

The paramaters for the yaw rate controller are KP = 2.0, KI = 0, KD = 0.01.

3. Altitude: A PID controller was developed for Altitude control. The quadrotor is com-
manded to hold an altitude of 50 cm. Fig. 5.13 shows the results. The parameters for
the altitude controller are KP = 0.18, KI = 0.08, KD = 0.6.

4. Speed: A PID controller for forward speed control was developed (since inertia matrix
is symmetric, same gains can be used for lateral speed control). The quadrotor is com-
manded to attain a speed of of 0.50 m/s (max. operating speed, determined for similar
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Figure 5.11: Simulation results for roll stabilisation

Figure 5.12: Simulation results for yaw rate tracking

use in [16]. Fig. 5.14 shows the results. The paramaters for the altitude controller are
KP = 4.0, KI = 0, KD = 0.05.
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Figure 5.13: Simulation results for altitude hold

Figure 5.14: Simulation results for speed hold

5.3.2 Rig Test Results

Before the quadrotor can be flown, the performance of the designed controllers must be tested
in a safe manner to reduce risk of damage to the vehicle in flight. This also allows further
tuning of the PID gains to improve vehicle performance. Therefore, a test rig as shown in Fig.
5.15 was used to analyse the roll, pitch and yaw stability. Tests were conducted about each
individual axis, the gains were tuned further and the corresponding data was recorded using a
serial connection between the PC and the on-board controller.

Fig. 5.16 shows the response of the quadrotor to pilot commands about the X axis (roll). Fig.
5.17 shows the response of the quadrotor to pilot commands about the Y axis (pitch).

An integral term had to be introduced to reduce steady state error. Thus, the final gains for
pitch stability were KP = 2.75, KI = 0.5, KD = 0 for G1 and KP = 0.9, KI = 0, KD = 0.05
for G2. For roll stability the control gains were KP = 2.3, KI = 0.5, KD = 0 for G1 and
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Figure 5.15: Quadrotor Stability Test Rig

Figure 5.16: Quadrotor roll stability on rig

KP = 0.9, KI = 0, KD = 0.09 for G2.

Fig. 5.18 shows the stabilisation results in Yaw. The quadrotor is disturbed to a heading of
−90 degrees and the desired heading is −108.5 degrees. The PID controller for heading hold
has the gains KP = 1.5, KI = 0.9 and KD = 0.01.
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Figure 5.17: Quadrotor pitch stability on Rig

Figure 5.18: Quadrotor yaw stability on rig
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Autonomous Navigation

To navigate in an unstructured indoor environment the quadrotor must be able to safely avoid
obstacles in a highly dynamic environment within its own kinematic constraints. The oper-
ator’s job is to provide the on-board computer with a target location. Using the laser scans
from the on-board LIDAR and state estimates from the localisation algorithm, the real-time
navigation algorithm running on the on-board computer must be able to work out motion com-
mands required to navigate to the target location. It must be kept in mind that the vehicle is
not provided any prior information about its surroundings. Its entire knowledge is built up in
real-time from the on-board sensors. While the SLAM algorithm estimates the vehicle’s state
and maps the visual features in 3-D, it is up to to the ‘motion planning’ algorithms to guide
the vehicle to its destination.

If a vehicle is to successfully traverse through an unknown environment, it must be able to use
its sensor measurements to quickly react to the dynamics of its surroundings and plan its motion
accordingly. This problem has been extensively researched in the robotics community. On the
one side there are approaches which generate an optimal path from a start point to a target
location for a known environment. The Configuration Space (C-Space) has been successfully
employed as a representation in this scope. In this representation, the robot is treated as a
single point. Then, on the other side, there are methods which are able to deal with dynamical
environments, calculating the motion commands periodically in real-time. These approaches
are called Reactive Navigation systems.

For the purpose of this project, a reactive navigation method developed by Blanco et al. [18] has
been adopted. In their paper, Blanco et al. [18] have described a method which overcomes the
issues of kinematic restrictions and real-time operation in a dynamic environment. They have
achieved this by decoupling the kinematic restrictions and obstacle avoidance using path models
to transform from kinematic-compliant paths and real-world obstacles into lower complexity
space called Trajectory Parameter Space (TP-Space). The task of obstacle avoidance in the
transformed space is relegated to a Nearness Diagram based approach. Blanco et al. [18] have
generalized path models through a novel tool called Parametrized Trajectory Generator (PTG)
which permits handling any number of transformations and they propose a navigation system
which manages multiple paths simultaneously, each corresponding to a different PTG. Their
system makes the best selection at each instant of time (in terms of path length and clearance)
which yields a more robust approach than traditional methods relying on circular paths. In the
proceeding section, a brief description of the method described in [18] is presented. Certain key
equations from [18] are reproduced here for the reader’s benefit.
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6.1 Reactive Navigation Using Parametrized Trajectory
Generators

The first and most important step in obstacle avoidance is to calculate the distance to obstacles.
This provides the necessary information to the robot for choosing its next movement. Blanco et
al. describe the distances directly in C-Space. The possible paths, when seen in C-Space form
3D surfaces (x,y,pose). These surfaces are called sampling surfaces because the distance to an
obstacle can be computed as the distance from the current robot pose to the intersection of the
sampling surface with obstacles in C-Space. Blanco et al. [18] reduce this 3 dimensional space
to 2 dimensions called the TP-Space. On the TP-Space, each point corresponds to a robot pose
lying on a C-Space sampling surface.

TP-Space representation uses polar coordinates with angular component α and distance d. α
represents the trajectory mapped from C-Space to TP-Space, while d determines the distance
of the pose along the selected trajectory. Blanco et al. state that “TP-Space transforms the
free-space detection problem for non-holonomic robots from C-Space into a collision avoidance
problem in transformed space”. The transformation is applied at each step of the navigation
process, thus the robot is always at the origin while surrounding obstacles are mapped to the
unit circle.

A Parametrized Trajectory Generator (PTG) maps points in polar coordinates (α,d) from TP-
Space to poses (x,y,φ) in C-Space such that straight paths from the origin in TP-Space are
transformed into kinematically compliant paths. A PTG is defined by Blanco et al. [18] as:{

PTG : A×D ⊂ < → <× S1

(α, d)→ (x, y), φ
(6.1.1)

Where A = α|α ∈ [−π, π] and D = d|d ∈ [0, 1] define the domain of the PTG and S1 is the
circular topology of the robot’s heading.

The robot’s path is mapped from TP-Space into C-Space in terms of trajectories. Thus, time is
introduced to substitute the distance component d. If V (α, t) = [v(α, t) ω(α, t)]T be the velocity
vector for a given trajectory where the components are the linear and angular velocity. Then, the
functions v(α, t) and ω(α, t) are called “Design Functions” by Blanco et al. [18], in the context
of a PTG, since they are used to design the trajectory. If P (α, t) = [x(α, t) y(α, t) φ(α, t)]T is
the robot pose at an instant, then these poses are calculated by the integration of the kinematic
constraint equation (refer to [18]).

To ensure that the PTG given by a design function is valid, certain conditions are imposed by
Blanco et al. [18]:

1. ”An arbitrary path model is not applicable to reactive navigation as the decision process
does not rely on past information, hence it must generate consistent reactive trajectories.”

2. “Only one trajectory can exist which takes the robot from its current state to any other
WS location (x, y), regardless of the orientation. Otherwise, the target position would be
observed at two different directions (straight lines) in TP-Space.”

3. “The trajectory must be continuous.”

To perform reactive navigation in TP-Space, two transformations are performed. The obstacles
need to be mapped to TP-Space and the goal location has to be translated to TP-Space. The
target/goal location is transformed to TP-Space using the inverse PTG function. Blanco et al.



6.1 Reactive Navigation Using Parametrized Trajectory Generators 47

assume obstacles to be points (true for Laser Scanners). These points are mapped to TP-Space
as regions called TP-Obstacles [18]. Only those C-Space obstacles that intersect with a sam-
pling surface are transformed to TP-Space. This is done to keep computational load low.

The robot’s physical environment is treated like a rectangular grid whose individual cells store
their associated TP-Obstacle, built from the set of pairs (α,d) that lead to collision. To allow
the robot to traverse through narrow passages, the grid must provide a high resolution (e.g. 1
to 2 cm).

The motion command generated in the TP-Space is a pair giving the desired speed and direction,
this motion command is mapped to a real robot movement in two steps as described in [18]:

1. “Obtain a normalized velocity command as Vnorm(αm) = v(αm, 0) = [v(αm, 0) ω(αm, 0)]T

, through the evaluation of the PTG design functions at α = αm. Take the initial response
(at t=0) since the PTG reference system is the robot current pose, i.e. the robot is always
at the origin of trajectories in the TP-Space”

2. “The velocity command for the real robot Vrob is computed by scaling Vnorm according to
the holonomic velocity s in TP-Space (provided by the holonomic method).”

6.1.1 Nearness Diagram Based Obstacle Avoidance

The obstacle avoidance method used in [18] is based on the Nearness Diagram Approach devel-
oped by Minguez and Montano [35]. The obstacle avoidance system relates the relative positions
of the robot, obstacles and target within a set of defined situations. These situations help clas-
sify the kind of motion that the robot should undertake based on certain safety parameters,
namely a security zone around the robot. [35] Relate the the robot and goal locations by means
of the “free walking area”. The “free walking area” is extracted as follows. First, search for
open spaces in the obstacle distribution, and determine the regions from two connected gaps.
Next, the region nearest to the target is selected and checked whether it is navigable by the
robot. Then, these relations are used to define the set of situations which are resolved using
the decision rules formulated by Minguez and Montano [35]) as follows:

1. “Safety criterion. Depending on whether obstacles are present in the safety zone. There
are two safety situations, Low Safety or not High Safety. In Low Safety, the first two
situations are obtained by applying the next criterion”

2. Dangerous obstacle distribution criterion

(a) “Low Safety 1 (LS1): The robot is said to be in LS1 when the obstacles in the security
zone are only on one side of the gap (closest to the goal) of the free walking area ”

(b) “Low Safety 2 (LS2): The robot is said to be in LS2 when the obstacles in the security
zone are on both sides of the gap (closest to the goal) of the free walking area”

3. Goal within the free walking area criterion

(a) “High Safety Goal in Region (HSGR): The robot is in HSGR when the goal location
is within the free walking area”

4. Free walking area width criterion. A free walking area is wide if its angular width is larger
than a given angle, and narrow, otherwise.”

(a) “High Safety Wide Region (HSWR): The robot is in HSWR when the free walking
area is wide ”
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(b) “High Safety Narrow Region (HSNR): The robot is in HSNR when the free walking
area is narrow ”

The actions of the robot are defined as follows in [35]:

1. “Low Safety 1 (LS1): This action moves the robot away from the closest obstacle, and
toward the gap (closest to the goal) of the free walking area”

2. “Low Safety 2 (LS2): Centers the robot between the two closest obstacles at both sides of
the gap (closest to the goal) of the free walking area, while moving the robot toward this
gap”

3. “High Safety Goal in Region (HSGR): Drives the robot toward the goal ”

4. “High Safety Wide Region (HSWR): Moves the robot alongside the obstacle ”

5. “High Safety Narrow Region (HSNR): Directs the robot through the central zone of the
free walking area”

At each instant, the action resolves the reactive navigation task, which is to avoid obstacles
while moving the robot toward the target. In Low Safety, it is achieved because both actions
avoid the obstacles while moving the robot toward the gap (closest to the goal) of the free
walking area. In High Safety, since there is no imminent danger, there is no need to avoid
collisions. The actions drive the robot toward the target, toward the gap of the free walking
area, or toward the central zone of the free walking area.

6.2 Complete Reactive Navigation Sysyem

Figure 6.1: System description of autonomous navigation [18]

The complete system is made up of a control loop where the sensor readings along with the
estimate of the target’s relative location (from SLAM algorithm) are supplied to the reactive
navigation system (Fig. 6.1). The reactive navigation system generates a velocity and turn
rate command that is sent back to the robot, closing the control loop. This process is repeated
periodically (e.g. at 10Hz), which steers the robot towards the target simultaneously responding
to dynamic obstacles. The target location is given in a fixed coordinate system i.e. the global
frame initialized in the SLAM filter.
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6.3 Simulation Results

To test the applicability of the above mentioned algorithm, a C++ script was written using
the MRPT libraries to simulate the reactive navigation system in a virtual environment. The
quadrotor is modelled as a circular robot with radius equal to the sum of its arm length, radius
of propeller and a safety margin. The safety margin is decided at 50 % of the arm length. This
safety margin is kept high to avoid a near-miss situation. Fig. 6.2 to Fig. 6.5 shows the vehicle
in its simulated environment traversing to a goal location marked as ‘X’. The simulation time
step is kept at 100 ms (10 Hz) which is the frequency of the navigation algorithm in real-time
operation. The speed of the quadrotor is limited to 0.5 m/s for safe operation and angular
speed is restricted to 15 degrees per second. Besides safe operation, a slow operating speed
would prevent motion blur in the camera image which can cause the visual SLAM algorithm
to lose track of features. Fig. 6.6 and 6.7 show the speed and angular velocity of the quadrotor
respectively during simulation. The reactive navigation algorithm generates speed and turn
rate commands which are sent to the attitude controller to convert to attitude commands.

Figure 6.2: Starting: Simulation of reactive navigation for quadrotor in a virtual environment (X
represents target while O the quadrotor)
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Figure 6.3: En Route: Simulation of reactive navigation for quadrotor in a virtual environment (X
represents target while O the quadrotor)

Figure 6.4: En Route: Simulation of reactive navigation for quadrotor in a virtual environment (X
represents target while O the quadrotor)
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Figure 6.5: Reached Target: Simulation of reactive navigation for quadrotor in a virtual
environment (X represents target while O the quadrotor)

Figure 6.6: Quadrotor speed during navigation
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Figure 6.7: Quadrotor angular velocity during navigation
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System Integration and Flight Testing

Section 1.4 introduced the three level control strategy that has been proposed for the quadrotor.
At the lowest level (CL1), the Attitude Controller performs the hover stabilisation, at control
level CL2 the visual SLAM algorithm performs the global localisation and state estimation
using the video feed from the monocular camera and the IMU data. The velocity estimates are
fed to the velocity feedback controller which generates the requisite attitude command for the
attitude controller to follow. At the top most level, the reactive navigation algorithm accepts
distance measurements from the LIDAR and computes the velocity and yaw rate commands.
The yaw rate commands are fed directly to the attitude controller.

Fig. 7.1 shows the overall system hierarchy design.

Figure 7.1: Hierarchal control system architecture
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Figure 7.2: The fully assembled BumbleBee quadrotor

7.1 Systems Integration

All the individual components described in Section 4.3 needed to be integrated with each
other for the quadrotor to function properly. This section describes the different kinds of
software/hardware techniques developed to interface all the sensors and actuators with their
respective controllers and the communications protocol developed to share information between
the Arduino Controller, Single Board Computer and Ground Control Station.

7.1.1 IMU

The SBG Systems IG-500A Inertial Measurement Unit can work on a power supply of up to
30V and draws 10 mA of current. Thus, it was powered using the 5 V output available from the
voltage regulator on-board the Arduino Mega. One key hurdle faced was that the device outputs
data using a serial RS-232 protocol, however, the Arduino Mega’s serial communication ports
only accept TTL signals. Therefore, a converter had to built using a serial level converter chip
(MAX232CPE) as shown in Fig.7.3. This converter, accepts RS-232 signals from the inertial
sensor and converts it to a TTL output which is sent to the Arduino Mega’s Serial 1 RX pin
(Pin 19).

The IMU is configured using the vendor provided Windows based software configuration tool
to output Kalman Filtered (150 Hz) Euler Angles, Angular Rates and Linear Accelerations
continuously at a baud rate of 115200 bps. Using the low-level communications protocol pro-
vided as part of the software development kit, a C++ based code was developed which uses
the Serial Communication Library of the Arduino development platform to decode the data
transmitted by the IMU. Fig. 7.4 shows the format of the data buffer transmitted by the IMU.
All measurements are transmitted as 4 byte float values.
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Figure 7.3: MAX232CPE functional diagram

Figure 7.4: Serial data buffer format

7.1.2 Radio Receiver

The AR7000 receiver is powered through its throttle output port which is connected to the 5
V supply generated by the ESC. It outputs PWM signals corresponding the commands sent by
the transmitter. These signals are sent to the analog inputs pins of the Arduino Mega (Pins
A7-A14) which are connected to the 16 bit A/D converters of the Atmega 2560 chip. To speed
up the process of reading the PWM signals, interrupt handlers are used to measure the time
interval between the signal high and low voltages to calculate the duty cycle. This helps lower
the latency of the controller. The Arduino board reads the receiver signals at a rate of 25 Hz.

7.1.3 Motors

The 4 motors are the sole actuators available to control the attitude and velocity of the quadro-
tor. These motors are controlled by their respective Electronic Speed Controllers which accept
the RPM set point as PWM signals from the Arduino board. The Arduino has 14 PWM output
pins of which pins 8,9,10 and 12 are used to command the motors. The analogWrite function
provided in the Arduino development library is used to generate the PWM command which
outputs the signal at a rate of 490 Hz. The motor command values are updated at the same
rate as the main control loop i.e. 150 Hz.
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7.1.4 Sonar

There are 3 ways to interface the MaxSonar with the Arduino board.

1. Analog

2. Pulse Width

3. Serial communication

The analog output is used as it is the easiest to interface. The sonar outputs are read at pin
A7 at a rate of 5 Hz using the analogRead function of the Arduino development library. The
sonar outputs a voltage of VCC/512 Volts per inch. Since the 5V supply from the Arduino is
used, a voltage of 9.8 mV is measured per inch of depth. To remove erroneous measurements,
a mode filter is used which works by recording 9 sensor measurements every time the sonar
measurement loop is activated (5 Hz).

7.1.5 LIDAR

The LIDAR is powered using the 5V output available from the Electronic Speed Controllers
and interface with the onboard computer using a mini-USB cable. The MRPT [9] software
library provides convenient functions to access the LIDAR measurements essentially giving it
a plug and play capability.

7.1.6 Communication

Serial communication was achieved in two ways:

1. Connecting the Xbee module directly to the Arduino board using the Xbee shield. This
configuration is very useful while flight testing as it can be used to set up direct com-
munication between the Ground Control Station and the xbee module for low level data
sharing, updating control gains etc. Using the Open Source Aeroquad Serial Communica-
tions protocol [1], the Aeroquad Configurator software was used to trim the gains during
flight and rig-testing.

2. Connecting the Arduino board to the on-board Single Board Computer via a USB cable
and subsequently interfacing the on-board computer with the Ground Controller Station
using the USB explorer dongle. This configuration is used for autonomous flight, since the
Arduino sends the vehicle states to the on-board computer which generates the guidance
and navigation commands and sends them back. This increases the data transfer speed
from the Arduino board as the USB cable can operate at 115200 bps compared to 57600
bps with the xbee. Then, the on-board computer can communicate with the Ground
Control Station to send the vehicle states using the Xbee module at a slower rate since
this part of the communication is not crucial to the safety of the vehicle.

A compact serial communication protocol was developed to transfer critical data like vehicle
states and guidance commands using the MRPT serial communications library [9] in C++.
The protocol works by sending a buffer containing float values separated by colons and each
message is initiated with the character “X” and terminated with the character “Y”. A typical
buffer sent from the Arduino to the on-board computer looks like this: DataBuffer = [X, φ, θ,
ψ, ωx, ωy, ωz, ax, ay, az, Altitude, Roll Command, Pitch Command, Yaw Command, Y]. A
standard command buffer which holds the velocity, turn rate and Enable/Disable switch value
sent from the on-board computer is: Command Buffer: [X, v, ω, Enable/Disable, Y]
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7.2 EKF-Based Monocular SLAM in Flight

Whilst, the simulation and small scale real-time performance for EKF-Based visual SLAM was
successful, the fast quadrotor dynamics coupled with vibrations made it difficult for the EKF-
SLAM to function in flight. The filter faced difficulty in maintaining an accurate track of the
visual features and in initialising new features when old ones went out of view. This could be
attributed to the fact that, feature position matches exhibited significantly high innovation,
which caused the filter to drift. Also, the uncertainty in the depth of the features could not be
sufficiently reduced, which led to high uncertainty in the state estimates. Tuning the process
noise characteristics, i.e. the standard deviation for linear and angular impulse (a, α) did lead
to slight changes in performance, with the filter sometimes keeping track for a long duration
before drifting. However, this issue must be fully resolved before EKF based visual SLAM
can be used in flight. Further difficulty was caused with the inability of the Fire-i camera to
function correctly with the MRPT software libraries. There were issues like automatic exposure
variation which completely upset the feature matching step of the SLAM filter. This made it
highly difficult to keep track of the features as their appearance changed without change in
camera position which affects the motion update step of the SLAM filter.

7.3 Alternate Approach to Visual SLAM in flight

To demonstrate the feasibility of Aerial SLAM. A second set of flight tests was conducted using
the Parallel Tracking and Mapping (PTAM) methodology developed by Klein et al. [33]. PTAM
takes a different approach from the filter based system described in chapter 3. PTAM divides
the localization and mapping tasks into two separate threads, i.e. tracking thread and mapping
thread. This takes advantage of multi-core processors now available as standard for personal
computers. The tracking thread, as the name suggests, tracks the selected visual features in
successive frames and calculates an estimate of the relative camera motion. Only FAST corners
are tracked and used for the pose estimation. The mapping thread selects a subset of the
incoming frames to build a 3D point map of the surroundings. These selected frames are called
keyframes and their selection is based on certain pre-determined heuristics. After that a batch
optimization is applied on the joint state of map points and keyframe poses. There are several
key differences compared to the EKF based visual SLAM approach, namely:

1. An EKF based state estimation is not used

2. Uncertainties are not modelled, which saves computational load

3. Order of number of features used is much higher

4. Accuracy is maintained by local and global batch optimisation

PTAM has been used by a few other researchers for aerial applications. For example, Ghadiok et
al. [30] used PTAM for a quadrotor platform to perform autonomous gripping of an object kept
on the ground. Blosch et al. [19] used PTAM on a quadrotor and demonstrated autonomous
trajectory following.

In my test scenario, due to time constraints, there was only sufficient time to demonstrate PTAM
on the quadrotor. Thus, it was flown manually within the lab environment and it mapped the
features in its surrounding without using prior information. As opposed to the EKF based
visual SLAM, PTAM does not face difficulty in tracking features even with rapid motion and
vibrations. This is mainly because it does not use a filter based approach. Fig. 7.5 shows the
3D position as estimated by the SLAM algorithm. Fig. 7.6 shows the on-board camera image
while running PTAM. Fig. 7.7 shows the 3D features as estimated by the algorithm along with
the camera pose at when keyframes are recorded.



7.3 Alternate Approach to Visual SLAM in flight 58

Figure 7.5: 3D Position of quadrotor

Figure 7.6: Onboard camera image: point features
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Figure 7.7: 3D features

Figure 7.8: Quadrotor in flight
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Discussion & Future Work

8.1 Discussion

Initial research into vision based navigation and localisation yielded a wealth of information
about the kind of methods and algorithms that would be best suited to aerial SLAM. Firstly,
a simple algorithm for visual navigation based on optical flow was developed and tested on a
Parrot A.R Drone. It works well for a corridor like environment and is capable of avoiding
large obstacles. It was also tested in an unstructured lab environment where it was seen to
face difficulty when faced with large planar obstacles. Visual odometry was also experimented
with, during the initial stage of the project. A Python code was developed based on the 5
Point Algorithm [37] to determine the trajectory of a monocular camera. It was found to be
able to run at 4 Hz which was not suitable for real time performance for a highly dynamic
platform. Also, there was no method to determine the scale of the camera motion. Thus the
focus was shifted to Monocular SLAM [28]. The simulation and real-time test results validated
the accuracy of this algorithm. It is able to run at a processing rate of 25 Hz and can perform
loop closure to correct for drift.

Once the visual SLAM algorithm was implemented, the design and development of the quadro-
tor followed. The platform development for this project was carried out keeping in mind the
unique requirements from the vehicle. A quadrotor was found to be the most suitable flying
platform, with its large payload carrying capacity and ability to hover. The complete develop-
ment cycle of the quadrotor was carried out with modest resources and successfully achieved
performance comparable to commercial systems at less than half the cost. The attitude control
system utilises a state-of-the-art IMU running an on-board Kalman filter and noise rejection
algorithms. It was integrated with a low cost open source embedded Arduino platform running
a PID based stability augmentation system. A reliable serial communication protocol was de-
veloped for sharing critical data between the on-board computer and Arduino board. It allowed
motion commands to be sent from the computer to the Arduino board and IMU readings from
the Arduino to the computer.

After the quadrotor and visual SLAM algorithm were completed. They were integrated and
tested on the quadrotor. A careful analysis revealed that EKF based visual SLAM faced
certain difficulties in coping with the rapid dynamics and vibrations on the aerial platform.
The vibrations caused the SLAM filter to drift which lead me to test an alternative method
on the quadrotor i.e. Parallel Tracking and Mapping System (PTAM) developed by Klein et
al. [33]. PTAM was able localise and map a complex lab environment while the camera was
mounted on the quadrotor. This was mainly because it did not maintain a filtered estimate of
the vehicle state, instead using global and batch optimisation and storing only keyframes for
the SLAM map.



8.2 Future Work 61

A reactive navigation system relying on depth measurements from the LIDAR was tested in
simulation. It is able to safely navigate the vehicle to its target location without a priori map
information while avoiding dynamic obstacles in real time. This software is highly modular and
can be adapted for future work on ground robots.

Overall, a unique flying platform equipped with multiple state-of-the-art sensors was developed.
It is capable of sustained stable flight. Numerous software solutions ranging from communica-
tions to visual SLAM were developed and tested. The key feature of this platform is that it is
capable of performing all computations on-board.

8.2 Future Work

The system developed in this project, though capable of quite a few tasks is not yet fully
matured. They key future work required to carry this work forward would be:

1. Modifying the EKF filter for visual SLAM: By varying the visual measurement update
rate to reach an optimal value such that vibrations can be rejected and at the same
time the camera motion can be tracked successively between frames. Further tuning of
modelling parameters (process noise) to obtain most suitable values for operation in flight.

2. To increase the consistency of the map over large number of features, an intelligent map
management system can be introduced such that the computational complexity does not
exceed beyond the limitations of the computer with increasing landmarks.

3. Developing an external positioning system to validate the on-board SLAM with the ground
truth data. This could either be a vision based tracking system or a more commonly used
motion capture system available commercially.

4. Integrating the LIDAR based reactive navigation system with visual SLAM to enable
autonomous flight.
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Appendix A

Aerodynamic Modeling
The aerodynamics calculations elaborate the behaviour of the propellers in air. The two most
significant quantities of importance to us are the Thrust and Drag. The analysis can be done
according to the combined momentum and blade element theory which merges the concepts of
two analysis [15].

A.1 Momentum Theory

The rotor can be modeled as a disk which imparts energy into the air, receiving a counter
reaction from it. The hypothesis of this theory are:

• A flux of air crossing the disk does not interact with external air

• The propeller has infinite number of blades

• The thickness of the disk is negligible

• The vertical speed of air is continuous through the disk

• The air is considered a perfect gas and incompressible

In this description, TMT is the thrust of the propeller. The air speeds are defined with respect
to the rotor disk; v−∞[m · s−1] is asymptotically over, v1[m · s−1] is directly over, v2[m · s−1]
is directly under v+∞[m · s−1] is asymptoticall under. The air pressures are defined relative to
the rotor as; p−∞[Pa], p1[Pa], p2[Pa] and p+∞[Pa].

Figure A.1: Momentum Theory [22]
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Fig. A.1 shows the momentum theory model graphically. The thrust generated by the rotation
of the propeller is proportional to the pressure difference through the disk. It can also be defined
as the change in momentum of the air passing through the disk.{

TMT = A(p1 − p2)

TMT = ṁA(v−∞ − v+∞) = ρAAv1(v−∞ − v+∞)
(A.1.1)

Where A[m2] is the area of the rotor disk, ṁA is the mass flow rate through the disk and
ρA[kg · m−3] is the air density. According to the proposed hypothesis, the air speed directly
over the rotor v1 is equal to that one directly under the rotor v2. The Bernoulli equation
between sections −∞ and 1 and between 1 and 2 are:

p−∞ +
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2
ρAv

2
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2
1 (A.1.2)
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2
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2
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Rearranging equations A.1.2 and A.1.3, and since p+∞ = p−∞, v1 can be written as:

v1 =
v−∞ + v−∞

2
(A.1.4)

The inflow speed vI [m · s−1] is

vI = v1 − v−∞ =
v+∞ − v−∞

2
(A.1.5)

Therefore, one can write the thrust as,

TMT = 2ρAAv1vI (A.1.6)

In hover condition (our usual operating point), v−∞ = 0, thus v1 = vI . The thrust generated
by one propeller is equal to the weight carried by it WP , i.e. a quarter of the vehicle weight.
Therefore, one can say,

WP = 2ρAAv
2
I (A.1.7)

The inflow ratio λ is used to relate the inflow speed to the rotor tip speed,

λ =
vi

ωHRP
(A.1.8)

Where, ωH is the angular speed of the blade in hovering condition and RP is its radius.
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A.2 Blade Element Theory

The Momentum Theory provides very little details about the performance of the propellers.
Thus, to ahieve a higher degree of accuracy in the modeling we use the Blade Element Theory
with some contributions from the Momentum Theory. Fig. A.2 shows the model of the propeller
seciton.

Figure A.2: Blade Element [22]

The horizon line is perpendicular to the rotor shaft (hovering condition). θI [rad] is the angle
of incidence between the horizon line and the blade chord line. α[rad] is the angle of attack
between the blade chord line and the local air flow velocity vector vT [m · s1]. vT is the vector
sum of the horizontal vH [m · s−1] and vertical vV [m · s1] air flow velocity. The angle between
the horizon and the local velocity vector is the local inflow angle φI [rad]. dDBET [N ·m1] is
the infinitesimal drag force while dLBET [N ·m1] is the infinitesimal lift force. The vector sum
of dDBET and dLBET is the infinitesimal aerodynamic resultant force dFBET [Nm−1]. dFBET
can be also be divided into two infinitesimal aerodynamic vertical dTBET [N ·m1] and horizontal
dHBET [N ·m1] components.

The vV velocity due to the inflow motion, thus, it is uniform for every section. The vH velocity
vector is due to the angular speed of the blade element. Since the velocity of each blade element
depends on its radial position from the rotation shaft it is a function of r.

vV = vI = ωPRPλ (A.2.1)

vH = ωP r = ωPRP
r

RP
(A.2.2)

From basic aerosdynamics theory [15], we know that the lift and drag generated by the blade
section is determined by,

dLBET =
1

2
ρAv

2
HCLcdr (A.2.3)
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dDBET =
1

2
ρAv

2
HCDcdr (A.2.4)

Where, CL and CD are the lift and drag coefficient and c is mean chord of the propeller blade.

CL = aα = a(θI − φI) (A.2.5)

a is the lift slope and for thin aerofoils it is assumed to be 2π [15] and α is the angle of attack.

The blade twist is assumed to vary linearly with radial position. Thus the model includes the
two constants zero angle of incidence I0[rad] and twist angle of incidence Itw[rad]. Hence,

θI = θI0 = θItw
r

RP
(A.2.6)

The angular velocity is significantly higher than the total inflow through the blade. Hence,
small angle approximations can be made to define the inflow angle φI as

φI =
vV
vH

(A.2.7)

Combining the above information, the infinitesimal lift force can be rewritten as,

dLBET =
1

2
ρAv

2
Ha(θI0 − θItw

r

RP
− vV
vH

)cdr (A.2.8)

Since the drag is order of magnitude smaller than the lift, the thrust dTBET is assumed equal
to the lift.

TBET = NB

∫ RP

0

dTBET = NBρAacω
2
pR

3
p(
θI0
6
− θtw

8
− λ

4
) (A.2.9)

To calculate the horizontal component dHBET can be simplified considering the small angle
approximations. However, the components of the lift and drag are both of similar magintude
therefore both need to be included.

dHBET = dDBET cosφI + dLBET sinφI ≈ dDBET + dLBET
vV
vH

(A.2.10)

The torque QBET generated by the propeller is calculating by multiplying the infinitesimal
forces by the arm and integrating over the entire propeller.

QBET = NB

∫ RP

0

(dDBET + dLBET
vV
vH

) = NBρAacω
2
pR

4
p(
CD
8

+ aλ(
θI0
6
− θtw

8
− λ

4
)) (A.2.11)
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Appendix B

Modeling of Quadrotor Dynamics[22]

B.1 Assumptions

The model used for the development of the quadrotor assumes the following:

1. The structure is rigid

2. The structure is symmetrical

3. There is no blade flapping in the propellers

4. Thrust and drag are proportional to the square of the propellers speed

The two most common ways of describing the dynamics of a vehicle are using Newton-Euler
formalism and Euler-Lagrange formalism. Newton-Euler is the preffered method, however, the
Euler-Lagrange method is also described in some detail below to form a better understanding
of the underlying fundamentals.

B.2 Modelling using Euler-Lagrange Formalism

The rotation dynamics of the test-bench are modelled in this section using Euler-Lagrange For-
malism. Let us consider earth fixed frame E and body fixed frame B. The airframe orientation
in space is given by a rotation R from B to E, where R is the rotation matrix.

L = T − V (B.2.1)

General form of motion in the Lagrange Method.

Γ =
d

dt
(
δL

δq̇i
)− δL

δqi
(B.2.2)

Where,
qi: Generalised Coordinates
Γ: Generalised Forces
T : Kinetic Energy
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V : Potential Energy

The earth fixed frame E is [ ~X, ~Y , ~Z] and body fixed frame B is [~x, ~y, ~z]. If a point on the body
B undergoes three successive rotations, it can be expressed by:

rX,Y,Z = R(φ, θ, ψ)

xy
z

 (B.2.3)

Then,


rX = cos(ψ)cos(θ)x+ (cos(ψ)sin(φ)− sin(ψ)cos(φ))y + (cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))z

rY = sin(ψ)cos(θ)x+ (sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ))y + (sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ))z

rZ = −sin(θ)x+ cos(θ)sin(φ)y + cos(θ)cos(φ)z

(B.2.4)

The corresponding velocities are obtained by differentiation of the above equation and the
magnitude of the velocity for any point is,

v2 = v2x + v2y + v2z (B.2.5)

From the equation and assuming the inertia matrix is diagonal (the structure was assumed to
be syymetrical). The kinetic energy is,

T =
1

2
Ixx(φ̇− ψ̇sin(θ))2 +

1

2
Iyy(θ̇cos(φ) + ψ̇sin(φ)cos(θ))2 +

1

2
Izz(θ̇sin(φ)− ψ̇cos(φ)) (B.2.6)

The potential energy is,

V = g

∫
(−sin(θ) · x+ sin(φ)cos(θ) · y + cos(φ)cos(θ) · z)dm(r) (B.2.7)

Using the potential energy formula, eqn. B.2.7 can be expressed in earth frame E as,

V =

∫
xdm(x)(−gsin(θ)) +

∫
ydm(y)(gsin(φ)cos(θ)) +

∫
zdm(z)(gcos(φ)cos(θ)) (B.2.8)

Using the Lagrangian and the derived formula for equations of motion (eqn. B.2.2), the 3
equations of motion are: 

Ixxφ̈ = θ̇ψ̇(Iyy − Izz)
Iyy θ̈ = φ̇ψ̇(Izz − Ixx)

Izzψ̈ = θ̇φ̇(Ixx − Iyy)

(B.2.9)

Torques generated due to thrust difference of each pair of motors,
τx = bl(Ω2

4 − Ω2
2)

τy = bl(Ω2
3 − Ω2

1)

τz = d(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

(B.2.10)
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Gyroscopic effect from propeller rotation,{
τ
′

x = Jrωy(Ω1 + Ω3 − Ω2 − Ω4)τ
′

y = Jrωx(Ω2 + Ω4 − Ω1 − Ω3) (B.2.11)

The quadrotor dynamic model describing the roll, pitch and yaw rotations contains then, three
terms which are the gyroscopic effect resulting from the rigid body rotation, the gyroscopic effect
resulting from the propeller rotation coupled with the body rotation and finally the actuators
action: 

Ixxφ̈ = θ̇ψ̇(Iyy − Izz)− Jθ̇Ωr + τx

Iyy θ̈ = φ̇ψ̇(Izz − Ixx) + Jφ̇Ωr + τy

Izzψ̈ = θ̇φ̇(Ixx − Iyy) + τz

(B.2.12)

The DC motors have well known equations,{
L didt = u−Rmoti− keωm
Jm

dωm

dt = τm − τd
(B.2.13)

As a small motor with very low inductance is used, the second order DC motor dynamics may
be approximated by:

Jm
dωm
dt

= − k2m
Rmot

ωm − τd +
km
Rmot

u (B.2.14)

By introducing the propeller model, the equation can be re-written as :{
˙ωm = − 1

τ ωm −
d

r3Jt
ω2
m + 1

km
u

1
τ =

k2m
RJt

(B.2.15)

The equation above can be linearised around a point ẇ0 to,

ẇm = −Awm +Bu+ C (B.2.16)

Where,

A =
1

τ
+

2dw0

ηr3Jt
, B =

1

τ
, C =

dw0

ηr3Jt
(B.2.17)



B.3 Newton-Euler Formalism 69

B.3 Newton-Euler Formalism

The equations of motion are generally written in the body frame ’B’. The origin of the body
fixed frame is assumed to be located at the center of mass of the vehicle. Also, the axes of
the frame ’B’ coincide with the body principal axis of inertia. This makes the inertia matrix
I diagonal which allows us to take advantage of the symmetry of the design and simplifies
calculations.

The forces acting in the body frame are written as,

m(V̇ B + ωB × V B) = FB (B.3.1)

Where m is the mass of the vehicle, FB is the force vector in body frame, V B is the velocity
vector in body frame and ωB is the angular velocity in body frame. Eqn. B.3.2 describes the
rotational dynamics of the quadrotor. I3×3 is the identity matrix, I is the inertia matrix, ωB

is the vector of angular rates in the body frame and τB is the vector of torque acting on the
vehicle in the body frame.

Iω̇B + ωB × (IωB) = τB (B.3.2)

Putting the above equations in a matrix formulation yields,

[
mI3×3 03×3
03×3 I

] [
V̇ B

ω̇B

]
+

[
ωB × (mV B)
ωB × (IωB

]
=

[
FB

τB

]
(B.3.3)

A generealized force vector Λ can be defined according to the Eqn. B.3.4.

Λ =
[
FB τB

]
=
[
Fx Fy Fz τx τy τz

]T
(B.3.4)

Therefore, one can write the dynamics equations in the following form,

MB ν̇ + CB(ν)ν = Λ (B.3.5)

Where ν̇ is the generalized acceleration vector in the body frame ’B’. MB is the system inertial
matrix and CB(ν) is the Corioli Centripetal matrix. MB is a diagonal matrix as shown below,

MB =

[
mI3×3 03×3
03×3 I

]
=


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

 (B.3.6)

The Coriolis-Centripetal matrix is,

[
03×3 −mS(V B)
03×3 −S(IωB)

]
=


0 0 0 0 mω −mv
0 0 0 mω 0 mu
0 0 0 mv −mu 0
0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixxp
0 0 0 Iyyq −Ixxp 0

 (B.3.7)
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In the above equation S(·) is the skew-symmetric operator. For a general vector k = [k1 k2 k3]T ,
the skew symmetric matrix of k is defined as,

S(k) = −ST (k) =

 0 −k3 k2
k3 0 −k1
k2 k1 0

 (B.3.8)

The force vector can be split into 3 major contributors i.e. Gravity, Gyroscopic Effects and
Actuator input. These are described in the following sub-sections.

1. Gravity
The contribution of the gravitational force on the body does not produce any torque as
it acts through the center of mass. GB(ξ) is the vector of gravitational forces on the
quadrotor in the body frame ‘B’ and RBE is the Euler rotation matrix (Body to Earth
frame).

GB(ξ) =

[
FBG
03×1

]
=

[
RBE

−1

FEG
03×1

]
=

 mg sin(θ)
−mg sin(φ) cos(θ)
−mg cos(φ) cos(θ)

 (B.3.9)

2. Gyroscopic Effects

The gyroscopic effects produced by the rotation of the propellers is according to Eqn.
B.3.10.

OB(ν)Ω =


03×1

−
∑4

1 JTP

ωB ×
0

0
1

 (−1)kΩk


 =


03×1

JTP

−qp
0

Ω

 = JTP


0 0 0 0
0 0 0 0
0 0 0 0
q −q q q
−p p −p p
0 0 0 0

 ~Ω
(B.3.10)

OB(ν) is the gyroscopic matrix and JTP is the total rotational moment of inertia of the
rotor (propeller + motor shaft) about the the propeller axis.

Ω = −Ω1 + Ω2 − Ω3 + Ω4 (B.3.11)

~Ω =


Ω1

Ω2

Ω3

Ω4

 (B.3.12)

B.3.1 Actuators

3. Actuators
The final contribution is produced from the main actuator input i.e. thrust and drag on
acting on the propellers. If these contributions due to the control inputs are called UB
then we have,
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UB(Ω) = EBω
2


0
0

b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
bl(Ω2

4 − Ω2
2)

bl(Ω2
3 − Ω2

1)
d(Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3)

 (B.3.13)

Where l is the moment arm of the propeller axis of rotation about the center of gravity of
the quadrotor and U1, U2, U3 and U4 are the movement commands. It is possible to write
the movement command vector UB(Ω) as the product of a constant matrix EB and Ω2.

EB =


0 0 0 0
0 0 0 0
b b b b
0 −bl 0 bl
bl 0 −bl 0
−d d −d d

 (B.3.14)

Taking Eqn. B.3.5 and formulating the Force vector Λ as a sum of GB(ξ) the gravity vector,
OB(ν) the gyroscopic moments vector, and UB(Ω) the actuator inputs. The dynamics of vehicle
can be expressed as,

MB ν̇ + CB(ν)ν = Λ = GB(ξ) +OB(ν) + EBΩ2 (B.3.15)

The dynamics can be expressed in a system of equations in the body frame B as,



u̇ = (vr − wq) + g sin(θ)

v̇ = (wp− ur)− g cos(θ) sin(φ)

ẇ = (uq − vp)− g cos(θ) cos(φ) + U1

m

ṗ =
Iyy−Izz
Ixx

qr − JTP

Ixx
qΩ + U2

Ixx

q̇ = Izz−Ixx

Iyy
pr − JTP

Iyy
pΩ + U3

Iyy

ṙ =
Ixx−Iyy

Izz
pq + U4

Izz

(B.3.16)

Where, 
U1 = b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

U2 = bl(−Ω2
2 + Ω2

4)

U3 = bl(Ω2
1 − Ω2

3)

U4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(B.3.17)

The quadrotor dynamic system described above is in the Body reference frame. However, it
can be useful to depict the angular rates w.r.t Body Frame and linear equations w.r.t Earth
Frame. In this hybrid system, the equations of motion are transformed to:
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Ẍ = (sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ))U1

m

Ÿ = (−cos(ψ)sin(φ) + sin(ψ)sin(θ)cos(φ))

Z̈ = −g + cos(θ)cos(φ)U1

m

ṗ =
Iyy−Izz
Ixx

qr − JTP

Ixx
qΩ + U2

Ixx

q̇ = Izz−Ixx

Iyy
pr − JTP

Iyy
pΩ + U3

Iyy

ṙ =
Ixx−Iyy

Izz
pq + U4

Izz

(B.3.18)

Where X,Y, Z are the position coordinates in the Earth Frame.
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