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Abstract—The SLAM problem is known to have a special
property that when robot orientation is known, estimating the
history of robot poses and feature locations can be posed
as a standard linear least squares problem. In this work,
we develop a SLAM framework that uses relative feature-
to-feature measurements to exploit this structural property
of SLAM. Relative feature measurements are used to pose
a linear estimation problem for pose-to-pose orientation con-
straints. This is followed by solving an iterative non-linear
on-manifold optimization problem to compute the maximum
likelihood estimate for robot orientation given relative rotation
constraints. Once the robot orientation is computed, we solve
a linear problem for robot position and map estimation. Our
approach reduces the computational complexity of non-linear
optimization by posing a smaller optimization problem as
compared to standard graph-based methods for feature-based
SLAM. Further, empirical results show our method avoids
catastrophic failures that arise in existing methods due to using
odometery as an initial guess for non-linear optimization, while
its accuracy degrades gracefully as sensor noise is increased.
We demonstrate our method through extensive simulations and
comparisons with an existing state-of-the-art solver.

Keywords: SLAM, graph-based SLAM, non-linear optimiza-
tion, relative measurements

I. INTRODUCTION

Relative measurements [1–5] allow a robot to exploit
structural properties of the environment, e.g., relative dis-
placement from one landmark to another is independent of
how a robot moves in a static world given a particular frame
of reference. Taking note of this property, we present a 2D
SLAM approach in which range bearing measurements are
transformed into relative displacements between features. In
our method, relative orientation constraints between poses are
formulated using translation and rotation invariant structural
properties. This allows our method to exploit the separable
structure of SLAM [6–8], i.e., robot heading estimation is
separated from the estimation of past robot positions and
feature locations. Using relative orientations between the set
of robot poses, our method solves a non-linear optimization
problem over the set of robot orientations following which
we solve a linear least squares problem for position (robot
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trajectory and map). We call this method Relative Feature
Measurements-based Simultaneous Localization and Map-
ping (RFM-SLAM).

-100 -50 0 50 100

X (m)

-100

-80

-60

-40

-20

0

20

40

60

80

100

Y
(m

)

RFM-SLAM Estimate

(a) RFM-SLAM estimate for
robot trajectory in one of our
simulations. RMS position error
is 1.44m.
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(b) GTSAM estimate for robot tra-
jectory for the same run, catas-
trophic failure due to bad initial
guess.

Fig. 1: Simulation results for map M2 with ⇡ 2000 nodes
for RFM-SLAM and GTSAM given identical data. The
true trajectory is in green, odometery is in black, RFM-
SLAM estimates are shown in blue and GTSAM estimates
in magenta. Feature plots are omitted for the sake of clarity.

Figure 1 shows a comparison between RFM-SLAM and
GTSAM [9] for a map with ⇡ 2000 nodes. When the
simulated data is input to GTSAM, the odometery based
initial guess results in catastrophic failure as GTSAM gets
stuck in a local minima whereas RFM-SLAM recovers the
robot trajectory and map given identical data. The major
contributions of this paper can be summed up as follows:

1) RFM-SLAM extends the class of methods that exploit
two-step orientation and position estimation to feature-
based SLAM.

2) Our approach reduces computational complexity of the
optimization problem, i.e., if there are N poses where
each pose x

k

= [p
k

,✓
k

]T and L landmarks then we
solve for N variables as opposed to 3N+2L in existing
methods (for the planar SLAM problem).

3) We show through empirical results that as odome-
tery noise increases, our method’s accuracy degrades
gracefully compared to a state-of-the-art non-linear
optimization-based SLAM solver.

We now proceed to discuss relevant related work. In



Section III we state our problem and preliminaries, subse-
quently in Section IV we present our approach wherein some
mathematical details are relegated to Appendix A. Results are
discussed in Section V followed by conclusions.

II. RELATED WORK

The initial work of [10] introduced filtering as a tool to
tackle the SLAM problem. Several later works [1, 2, 4] pro-
posed to exploit relative feature measurements in a filtering-
based approach. In [2] the correlations between relative
measurements from common landmarks are not considered
which leads to a sub-optimal estimate. In [1] only relative
distances are estimated which neglects the information pro-
vided by the direction component of relative measurements.
The method of [4] exploits the shift and rotation invari-
ance of map structure but cannot consistently incorporate
long range correlations and is thus unable to close loops.
In comparison to aforementioned methods [1, 2, 4] our
formulation takes into account both; correlations between
relative measurements from common landmarks; and long
range correlations between relative measurements in the
global frame. This allows RFM-SLAM to form consistent
estimates and close large loops. The method of [11] exploits
relative feature measurements to decouple map estimation
from robot localization in an Extended Information Filter-
based formulation, while maintaining long range correlations.
Compared to [1, 2, 4, 11] we exploit relative measurements
to decouple robot orientation estimation from map and robot
position. Further RFM-SLAM does not maintain a recursive
estimate over the map or robot state, it falls into the category
of methods that solve the full SLAM problem.

The seminal contribution of [12] introduced a non-linear
optimization based approach to solving the full SLAM prob-
lem wherein robot poses are treated as nodes of a graph and
constraints as edges. In [13] the authors extended graph-based
SLAM to feature mapping and several others [14–20] made
significant contributions to extend the initial work of [12]. A
key limitation of non-linear iterative optimization methods
is that an initial guess is required to bootstrap the solver
and this guess is usually provided by odometery. However,
it is well known that odometery error grows unbounded and
is often unreliable. This reliance on odometery for initial
guess makes non-linear optimization methods susceptible to
getting trapped in local minima often resulting in arbitrarily
bad solutions [8, 21] (sometimes referred to as catastrophic
failures, see Fig. 1). Recent works [6–8, 22] have sought
to exploit structural properties of SLAM with the aim of
decoupling non-linearities that arise due to orientation. In
[22] the authors develop an incremental SLAM approach that
exploits orientation and position separation in 2D range-scan
mapping. The works of [7, 8] provided several important
insights, demonstrating that estimating orientation as the
first step and using these estimates to initialize pose graph
optimization results in a robust solution. In [23] a general on-
manifold optimization based method is developed to estimate
orientations from noisy relative measurements corrupted by

outliers. In relation to [23], our orientation estimation method
(Section IV-B2) is only concerned with measurement data
corrupted by zero-mean Gaussian noise similar to [6, 7]. We
direct the reader to [21] for a recent survey of 3D rotation
estimation techniques. The works of [6–8] are closely related
to ours, hence we proceed to discuss these in greater detail.

Linear Approximation for pose Graph Optimization
(LAGO) [7] is a method for planar relative pose graph SLAM
that separates robot orientation and position estimation into
two successive linear problems with the key benefit of a
reduced risk of convergence to local minima and provides
a robust initial guess for iterative optimization. The LAGO
formulation does not deal with feature-based measurements
and cannot be extended to 3D. In contrast, RFM-SLAM is de-
signed for feature-based SLAM and majority of the algorithm
presented in this paper ports directly to the 3D domain (see
discussion in Section IV-D). LAGO develops a closed form
approach (regularization) to solve the angle wrap-around
problem that relies on rounding-off noisy relative orientation
measurements. This technique may degrade rapidly once
sensor accuracy reduces beyond a certain threshold ([7],
Section 6). In contrast, RFM-SLAM does not invoke any
such approximation as it computes the maximum likelihood
estimate for the orientations via an on-manifold optimization.
In this regard, compared to LAGO, our approach trades
computational speed, for accuracy and reliability in the
orientation estimation phase.

In [8] the authors develop MOLE2D, a multi-hypothesis
approach to global orientation estimation from relative mea-
surements that does not suffer from local minima even in the
case of high noise. This is achieved through equivalence of
the general manifold optimization problem to unconstrained
optimization on the integer lattice. Performance guarantees
are also provided in the sense that at least one solution
is guaranteed to be close to the true underlying global
orientation. In relation to our work, MOLE2D provides an
alternative to the on-manifold optimization step described in
Section IV-B2.

In [6], the authors develop a modified Variable Projection
(VP) technique for non-linear optimization that exploits the
separation of position and orientation in SLAM and runs
faster than the standard Gauss Newton algorithm. The method
of [6] solves for orientation and position successively in
an iterative manner as opposed to RFM-SLAM wherein
iterative non-linear optimization is only applied to orientation
estimation. In certain instances the method of [6] may
not converge to a solution ([6], Section 5) as it relies on
odometery for the initial guess which may be arbitrarily bad.
Our empirical observations indicate that as sensor noise is
increased, RFM-SLAM performance degrades gracefully and
we do not observe cases where the method does not converge
to a solution (see Table I).

III. PRELIMINARIES AND PROBLEM

Let x

k

2 X, u

k

2 U, and z

k

2 Z represent the
system state, control input, and observation at time step k



respectively, where X,U,Z denote the state, control, and
observation spaces respectively. The measurement model h

is denoted as z

k

= h(x
k

) + v

k

, where v

k

⇠ N (0,R
k

) is
zero-mean Gaussian measurement noise. The map (unknown
at t0) is a set of landmarks (features) distributed throughout
the environment. We define the j-th landmark as l

j

and l̂

j

as
the estimate of l

j

. The observation for landmark l

j

at time
t

k

is denoted by z

j

k

2 z

k

. The inverse measurement model is
denoted by g such that for a given measurement zj

k

and the
state x

k

at which it was made, g computes the landmark
location l

j

= g(x
k

, z

j

k

). The state evolution model f is
denoted as x

k+1 = f(x
k

, u

k

) + w

k

where w

k

⇠ N (0,Q
k

)
is zero-mean Gaussian process noise.

We define ldij

k

to be the relative feature measurement,
from feature l

i

to l

j

in the local frame of the robot at
time t

k

. In our framework, a relative feature measurement
is an estimate of the displacement vector from one feature
to another (Fig. 2(a)). The local relative measurement is
computed as ldij

k

= l�j

k

� l�i

k

, where l�i

k

,

l�j

k

are relative
positions of features l

i

and l

j

respectively with respect to
the robot in its local frame. Thus it is linear in positions of
the two features in the local frame. Let C(✓

k

) denote the
Direction Cosine Matrix (DCM) of the robot orientation at
state x

k

. C is a function of the robot orientation parameter ✓
k

(e.g., Euler angles, Quaternions etc.). A local measurement
in the robot frame can be projected into the world (global)
frame as

C(✓
k

)T l�i

k

= w�i

k

= l
i

� p
k

, (1)

where l
i

and p
k

are the feature and robot positions in the
world frame. Thus, it is the transformation of local measure-
ments to the global frame that introduces non-linearity due
to the trigonometric functions of orientation. If heading ✓⇤

is known, define l� to be the vector of all local feature
position measurements and let [pT lT ]T be the vector of all
robot and feature positions in the world frame, then we have
the following standard linear estimation problem in position

C(✓⇤)T l� = A0

p
l

�
, (2)

where A0 is a matrix composed of elements in the set
{�1, 0, 1}. However, direct heading estimates may not be
readily available due to which we need to estimate the robot
heading. In the proceeding section we develop the RFM-
SLAM algorithm and describe our heading and position esti-
mation method in detail. It is assumed that relative orientation
measurements are independent, all noises are assumed to be
zero-mean Gaussian and the front-end is given, the focus of
this paper is on the back-end estimation problem.

IV. METHODOLOGY

The key steps in RFM-SLAM are as follows:
1) Transform range bearing observations from robot to

features into relative position measurements in the

robot’s local frame at each pose, then calculate feature-
to-feature displacements vectors (Section IV-A).

2) Compute the relative rotation constraints for poses that
either are connected by proprioceptive odometery or
view identical pairs of landmarks or both (Section
IV-B1).

3) Compute the Maximum Likelihood Estimate (MLE)
for the robot orientation given constraints computed
in the previous step (Section IV-B2).

4) Solve the global linear estimation problem over robot
and feature positions (Section IV-C).

A. Relative Feature Displacement Estimation

Figure 2 depicts our proposed feature mapping process.
At time t

k

let the robot make range bearing measurements
z

i

k

and z

j

k

to landmarks l

i

and l

j

respectively. Using the
inverse measurement model g (Section III), we can compute
the displacement vector from l

i

to l

j

in the robot frame as

ldij

k

= l�j

k

� l�i

k

= lg�(z
j

k

)� lg�(z
j

k

)

= lg
d

(zj
k

, zi
k

). (3)

lg
d

(zj
k

, zi
k

) is the relative measurement from l

i

to l

j

in
the robot’s frame, which is independent of robot position
and orientation. Figure 2(a) shows a simple depiction of
a robot making a relative position measurement between
two features. Let ld̂

k

= lg
d

(z
k

) be the vector of local
relative measurements, r̄lg

d

|z
k

be the Jacobian of function
lg

d

(z
k

) and Rz
k

be the noise covariance of z
k

. Then we
have ld̂

k

⇠ N (ld
k

,

lRd
k

= r̄lg
d

|z
k

Rz
k

r̄lgT

d

|z
k

). It is
important to note that though measurements to each feature
are independent, the set of relative feature measurements is
correlated. This can be attributed to the correlations between
relative measurements from common landmarks.

B. Heading Estimation

We now proceed to develop a two-part heading estimation
technique. First, we recognize the fact that relative feature
measurements-based constraints on the rotation between two
poses are linear in the elements of relative orientation Direc-
tion Cosine Matrix (DCM). Thus we propose a linear least
squares formulation to estimate the relative rotation between
poses. The second step is described in Section IV-B2 where
we apply an on-manifold optimization approach to solve
the general non-linear heading estimation problem at loop
closure given relative orientation estimates.

1) Linear Relative Rotation Estimation: Let C
qp

=
C

p

CT

q

be the relative rotation matrix between two poses
x

p

, x

q

where C
p

,C
q

2 SO(2). Let there be two landmarks
l

i

, l

j

visible from poses x

p

and x

q

such that ldij

p

and
ldij

q

are respectively the relative feature measurements in
the local frame at each pose. Thus we have a constraint
ldij

p

� C
qp

ldij

q

= 0 for every such pair of landmarks. Let
c
qp

2 R2 be the vector of parameters for C
qp

(see Eq. 17,
Appendix A).



(a) Robot making local relative
measurements.

(b) Robot observes same features
from two different poses forming
a relative rotation constraint.

(c) Tranformation of local robot to fea-
ture relative measurements to the global
frame.

Fig. 2: (a) A robot making observations to two features l

i

and l

j

at time t

k

, the range bearing measurements allow the robot
to compute the relative positions l�i

k

and l�j

k

of the features in its local frame which are then transformed to a relative
displacement measurement l

d

ij

k

between the two features. (b) A robot making observations to two features from poses x

p

(green arrows) and x

q

(blue arrows). Seeing the same two features forms a rotation constraint C
qp

between these poses. (c)
A robot sees the same landmark from two poses, the transformation of local relative measurements to the global frame is
used in Section IV-C to solve for robot and feature positions.

As a robot moves, it makes two types of noisy observa-
tions:

1) Proprioceptive odometery measurements b
�✓

odo

⇠
N (�✓,�2

odo

) provide a direct estimate of the relative
rotation angle �✓ between successive poses x

p

and
x

q=p+1, where �

2
odo

is the measurement noise variance.
2) Relative feature measurements to common landmarks

from two poses provide a relative orientation constraint.
Let ld̂0

p

,

ld̂0
q

be the respective local relative measure-
ments to common features from made from poses x

p

and x

q

, with error covariances lR0
d

p

,

lR0
d

q

respectively.
We have the following linear problem for the relative
rotation parameter vector c

qp

,

ld̂0
p

= B0
qp

c
qp

+ vd
pq

, (4)

where B0
qp

(ld̂0
q

) (see Eq. 18, Appendix A) is a matrix
function of the relative measurements from pose x

q

and
vd

pq

⇠ N (0,Rd
pq

) is a zero-mean Gaussian measure-
ment noise. The error covariance in this measurement is
approximated as Rd

pq

= lR0
d

p

+Ĉ
qp,init

lR0
d

q

ĈT

qp,init

.

For successive poses, Ĉ
qp,init

= Ĉ
qp,odo

, i.e., the relative
rotation estimate from proprioceptive odometery. Between
successive poses, all feature constraints in the form of
Eq. 4 can be stacked along with proprioceptive odometery
measurements which gives us the following linear problem


ĉ
qp,odo

ld̂
p

�
=


I

B0
qp

�
c+


vc

qp,odo

vd
pq

�

= B
qp

c+ vc
pq

(5)

where vc
pq

⇠ N (0,Rc
qp

), and Rc
qp

=
diag([Rc

qp,odo

,Rd
pq

]). Equation 5 can be rewritten
as

zc
qp

= B
qp

c
qp

+ vc
qp

. (6)

Dropping the pose subscript for clarity, we can compute
the estimate ĉ = (BTR�1

c B)�1BTR�1
c zc and its error

covariance ⌃c = (BTR�1
c B)�1.

A robot may close a loop and return to a previously
visited location and re-observe features. At loop closure, we
may solve Eq. 4 to estimate the relative rotation between
two poses x

p

and x

q

. In this case, Ĉ
qp,init

= Ĉ
p

ĈT

q

,
where Ĉ

p

, ĈT

q

are estimated by chaining together successive
relative rotation estimates. To ensure that the solution is
an orthogonal rotation, we project it back onto the SO(2)
manifold as ĉ

proj

= ⌘(ĉ), where ⌘ is a vector valued
function (see Eq. 20, Appendix A). The error covariance post
projection is ⌃c

proj

= r̄⌘|ĉ⌃cr̄T⌘|ĉ where r̄⌘|ĉ is the
Jacobian of projection function ⌘ computed at the estimated
values. Once ĉ is computed, it is transformed into the relative
heading angle value (Eq. 21, Appendix Appendix A), which
in 2D is the scalar b

�✓.
Planar SLAM has the property that relative orientation

measurements are linear in heading by virtue of which we
can formulate the following linear problem

c�✓ = H✓ + v
✓

, (7)

where c�✓ is the vector all relative orientation measure-
ments, H is a matrix composed of elements from the set
{�1, 0,+1} and ✓ is the vector of robot heading angles.
However, solving Eq. 7 directly may not provide the correct
answer as the linear least squares formulation is indifferent
to the angle wrap-around problem. In the proceeding section
we describe how to overcome this problem. Lastly, we
may compute the information matrix of the global heading
estimate from Eq. 7 as ⌦✓ = HTR�1

✓

H where R
✓

is a di-
agonal matrix composed of uncertainty in relative orientation
estimates. In Section IV-C we show how information matrix
⌦✓ is used by our algorithm to compute the map and history
of robot positions.

2) On-Manifold Optimization Using Relative Orientation
Measurements: The method described previously allows us



to estimate relative rotations between poses. The set of poses
and constraints from relative rotation estimates form a graph
G = (V, E) whose nodes V = {⌫1, . . . , ⌫n} are the pose
orientations and whose edge ✏

pq

2 E is a relative orientation
constraint between nodes ⌫

p

, ⌫

q

. The problem at hand is to
compute the global orientations for all nodes given relative
rotation measurements.

Let Ĉ
qp

be the estimate of DCM C
qp

for the relative
rotation between nodes ⌫

p

, ⌫

q

. In the noise free measurement
case, Ĉ

qp

C
q

= C
p

. However, given a set of noisy measure-
ments we minimize

P
✏

pq

2E qp

||Ĉ
qp

C
q

�C
p

||
F

where ||·||
F

denotes the Frobenius matrix norm and 

qp

is a weight for the
measurement Ĉ

qp

. Now the Frobenius norm can be expanded
as ||Ĉ

qp

C
q

�C
p

||2 = ||C
p

||2 + ||C
q

||2 � 2tr(CT

q

ĈT

qp

C
p

).
Thus minimizing the Frobenius norm is equivalent to

minimizing the term �tr(CT

q

ĈT

qp

C
p

) where tr(·) denotes the
trace operator. Using properties of trace (tr(X) = tr(XT )),
we have the cost function to minimize as

J = �
X

✏

pq

2E


qp

tr(CT

p

Ĉ
qp

C
q

), (8)

where 

qp

= 1/�
�✓

qp

, i.e., inverse of standard deviation
of relative rotation estimate. The Euclidean gradients for the
cost function J are

@J

@C
p

= �
X

✏

pq

2E


qp

Ĉ
qp

C
q

,

@F
c

@C
q

= �
X

✏

pq

2E


qp

ĈT

qp

C
p

.

(9)
Note that in the cost function given by Eq. 8, we directly

optimize over the set of orientations for all poses. The
initial guess can be computed by chaining together relative
rotation estimates computed in Section IV-B1. Another way
of looking at Eq. 8 is as follows, we have Ĉ

qp

= V
qp

C
p

C
q

where V
qp

is the perturbation due to noise. Then solving
Eq. 8 is equivalent to computing the maximum likelihood
estimator with a Langevin prior on the perturbation V

qp

where 

qp

becomes the Langevin concentration parameter
[23]. We use the Manopt MATLAB toolbox developed in
[24] to minimize the cost function J using trust regions based
optimization routine [25].

C. Global Trajectory and Feature Estimation

Abusing notation slightly, let l�̂ ⇠ N (l�,

lR� =
blkdiag([lR�1 ,

lR�2 . . . ])) be the vector of all local rel-
ative position measurements, i.e. from robot to features and
odometery between successive poses. After computing the
global orientations according to Section IV-B2, the vector
of local relative measurements l�̂ can be transformed to
the world frame similar to Eq. 2. From the transformed
global measurements we can formulate the linear estimation
problem as

w�̂ = ĈT l�̂ = A0

p
l

�
+ wv�, (10)

where Ĉ = C(✓̂) is the corresponding composition of
DCM matrices parametrized by the estimated heading ✓̂,
[pT lT ]T is the vector of robot and feature positions, A0

is a matrix with each row containing elements of the set
{�1, 0,+1} and wv� ⇠ N (0,wR� = CT lR�C) is the
noise vector. If we were to solve for positions directly from
Eq. 10, we would end up with an incorrect estimate as the
global orientation estimates ✓̂ are correlated. Thus relative
position measurements in the global frame are correlated with
heading estimates as well. We now describe how to setup the
position estimation problem while correctly incorporating the
appropriate error covariances similar to the trick employed in
LAGO [7]. After computing the orientation estimates ✓̂ along
with the transformed global relative position measurements
we stack them to give us a new measurement vector �. Then
we have

� = h
w

(l�,✓)+v
w

=


ĈT l�̂

✓̂

�
=


A0 0
0 I

�

| {z }
A

2

4
p
l
✓

3

5+

wv�

v✓

�
.

(11)
The error covariance R� of measurement vector � is then

given by,

R� = r̄h
w


lR� 0
0 ⌃✓

�
r̄Th

w

(12)

where r̄h
w

is the Jacobian of measurement function h
w

(Eq. 11) given by

r̄h
w

=


CT M l�̂
0 I

�
, (13)

where M = @CT

@✓ . Thus we have

R� =


wR� +M⌃✓M

T M⌃✓

⌃✓M
T ⌃✓

�
. (14)

Finally, the solution to the linear estimation problem of
Eq. 11 is given by

2

4
p⇤

l⇤

✓⇤

3

5 = (ATR�1
� A)�1ATR�1

� �. (15)

Note that Eq. 15 involves the inversion of a large sparse
matrix R� which may not be suitable for implementation
due to complexity and potential numerical issues. However,
this inversion is easily avoided by analytically computing the
information matrix ⌦� = R�1

� using block-matrix inversion
rules as

⌦� =


wR�1

� �wR�1
� M

�MT wR�1
� ⌦✓ +MT wR�1

� M

�
. (16)



D. Discussion
In Section IV-B1, two approximations are involved. The

first in calculation of error covariance of relative orientation
constraints and the second in transformation from DCM pa-
rameters to a scalar angle value. Both involve a linearization
that works well in practice as demonstrated by results in
Section V. However in cases where the initial guess is of very
high-quality, standard non-linear optimization may provide
better accuracy as this approximation is not involved (see
Fig. 4).

Extending to 3D: The global orientation optimization
problem given relative measurements (Eq. 8) does not change
from 2D to 3D. A minor difference arises in solving for
relative orientation at loop closure (Eq. 4) where a robot
would require observations to 3 features from two poses as
9 constraints are required to solve for the DCM (C

k

2 R3⇥3

in SO(3)). Further, the linear position estimation problem of
Eq. 11 also remains identical. The key difference occurs in
computing the uncertainty over global orientation estimates
as the 3D rotation problem cannot be setup similar to the
2D case (Eq. 7). In 3D, relative orientations measurements
are not linear in robot orientation, rather they are non-linear
functions of rotation parameters. In this regard, the work of
[26] develops an analysis for first-order error propagation in
3D rotation estimation which may be applicable to future
extension of this work.

V. RESULTS

We conducted 1600 simulations in total for two planar
maps M1 and M2 (see Figs. 3(a) and 3(b)). The maps
themselves were constructed by randomly sampling land-
marks in a 2D environment after which simulated sensor
data was collected by driving the robot around a sequence
of waypoints. Proprioceptive odometery noise �

odo

is varied
by scale factor ↵ = {1, 2, 3, 4}, where ↵ = 1 corresponds
to �

odo

= diag([0.05m, 0.05m, 0.6�]) and range bearing
sensor noise �

rb

is varied by scale factor � = {1, 2, 3, 4},
where � = 1 corresponds to �

rb

= diag([0.05m, 0.6�]).
For each map, 50 simulations were conducted for each fixed
noise level and 16 variations of noise values were used in
total. For each simulation the resulting data was processed
by both RFM-SLAM (MATLAB) and GTSAM (C++) [9].
GTSAM utilized the Levenberg-Marquardt Algorithm and
both Manopt [24] and GTSAM were allowed a maximum
of 100 iterations. We now proceed to discuss our results in
the context of key aspects that affect solution accuracy, i.e.,
map, odometery noise and range bearing sensor accuracy.

A. Changing Map
Figure 3 shows the two maps; map M1 with 1129 robot

poses and 286 landmarks; and map M2 with 2064 robot poses
and 777 features. Each map presents a different challenge,
i.e., in M1 there are 2 loop closures and robot trajectory does
not terminate at the start location, whereas in M2 there are 5
loop closures and robot returns to its start location. Table I
shows that GTSAM average RMSE in robot pose is greater
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(a) Map M1 with 1129 robot
poses and 286 landmarks. The
robot trajectory is 544.50m long
with 2 loop closures but robot
does not return to start.
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(b) Map M2 with 2064 robot
poses and 777 landmarks. The
robot trajectory is 1000.87m
long with 5 loop closures.

Fig. 3: The two scenarios used in the simulations and
comparisons.

for map M2 than M1 for all noise combinations except for
↵ = 1,� = 4. We note GTSAM suffers more catastrophic
failures in map M2 than map M1 (Table I). This is despite
the fact that there are more loop closures in M2 and robot
returns to start. The previous observation may be attributed to
the trajectory in M2 (⇡ 1000m) being longer than in M1 (⇡
500m) which results in odometery based initial guess being
further from the ground truth than for map M1. An interesting
difference emerges, for all noise combinations in the case of
RFM-SLAM, average RMSE for map M2 is smaller than that
for M1 despite the trajectory in M2 being twice as long as
that of M1. This may be attributed to two factors; (i) RFM-
SLAM is able to exploit the graph topology for M2 [27]
(multiple loop closures) in the orientation estimation phase;
(ii) using range bearing measurements to augment relative
orientation estimation provides a measure of robustness to
the on-manifold optimization problem and purely odometery-
based initial guess plays no role in the estimation process.
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Fig. 4: Behavior of RMSE in robot position as odometery
noise level ↵ is increased for different �. The solid blue
curves depict RFM-SLAM behavior and dashed magenta
curves are for GTSAM.

B. Increasing Proprioceptive Odometery Noise

Figure 4 shows that for low odometery noise ↵ = 1
both methods perform comparably (same order of magnitude
in RMSE) in both scenarios. For ↵ = 1, in the case of
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Fig. 5: Behavior of RMSE in robot position as range bearing
noise level � is increased for different ↵.

map M1 GTSAM performs better than RFM-SLAM for low
range bearing noise. Increasing the proprioceptive odometery
noise has the effect of reducing the quality of initial guess
that GTSAM relies on which is evident from Figs. 4(a)
and 4(b). In both maps, as ↵ is increased, RFM-SLAM
performance degrades much slower compared to GTSAM,
where in map M2 particularly (Fig. 5(b)) GTSAM shows
a rapid decline in solution accuracy. We take the case of
� = 1 to highlight the variation in solution accuracy as
odometeric noise is increased from lowest (↵ = 1) to its
highest (↵ = 4) value. In the case of M1, GTSAM solution
accuracy degrades from 1.004m to 5.389m as the number of
catastrophic failures increased from 0 to 4, whereas RFM-
SLAM accuracy degrades from 1.475m to 2.256m. In the
case of M2, GTSAM solution accuracy degrades rapidly
by 1709.3% as RMSE rises from 1.718m to 31.084m due
to the number of catastrophic failures rising from 1 to 18
whereas RFM-SLAM accuracy reduces gently from 0.859m
to 0.982m. Thus simulation results show that RFM-SLAM
solution accuracy degrades gracefully for both maps with
increasing noise as it does not suffer catastrophic failure
whereas GTSAM’s performance is dominated by its sensi-
tivity to the initial guess error (odometery).

C. Increasing Range Bearing Sensor Noise

Figure 5 shows that for the lowest odometeric noise value
(↵ = 1), both methods show a well defined behavior in
RMSE growth as � increases. We look at the variation in
error between lowest (� = 1) and highest (� = 4) range
bearing sensor noise when proprioceptive odometery noise
is lowest (↵ = 1). In map M1 as � increases from 1 to
4, RFM-SLAM RMSE rises from 1.475m to 5.028m, for
GTSAM in the same map, we see a rise from 1.004m to
2.687m. In case of map M2, RFM-SLAM RMSE increases
from 0.859m to 4.4m (418% increase) whereas for GTSAM
we see a rise from 1.718m to 1.771m. Thus RFM-SLAM
exhibits a higher relative increase in RMSE than GTSAM for
increasing �. Thus simulation results show that compared to
GTSAM, RFM-SLAM performance is dominated by range
bearing sensor noise.

D. Discussion

Each method has a dominating factor that affects its behav-
ior; for RFM-SLAM it is the range bearing sensor noise as we
rely on this information in the orientation optimization phase;
for GTSAM it is the proprioceptive odometery as it relies
on odometery to bootstrap the solver. However, our results
indicate that for all noise values, RFM-SLAM remains free
of catastrophic failures due to which RMSE growth behaves
well unlike in the case of GTSAM where the propensity of
catastrophic failures increases with odometeric noise. In the
case of GTSAM we see an order of magnitude increase in
maximum RMSE over RFM-SLAM (⇡ 40m vs. ⇡ 7m) at
↵ = 4,� = 3. In few cases, GTSAM failed to converge to a
solution, these numbers are also reported in Table I. Further
as the number of robot poses grows, odometery based initial
guess diverges in an unbounded manner which may tend to
dominate the solution accuracy in existing methods compared
to noise in range bearing sensing.

VI. CONCLUSIONS AND FUTURE WORK

A novel approach to solving the feature-based SLAM
problem was presented that exploits separation of robot ori-
entation from position estimation. Empirical results indicate
that RFM-SLAM is able to avoid catastrophic failure and so-
lution accuracy behaves well under varying noise conditions.
Decoupling orientation estimation from position exhibits a
distinct advantage in that robust solutions can be obtained
which one may use to bootstrap full non-linear optimization
solvers. Future work involves implementing RFM-SLAM
in more efficient frameworks, e.g. C++ to compare the
time required to solve given problems with state-of-the-art
solvers on publicly available datasets. Though the non-linear
optimization problem for orientation may be susceptible to
initial guess error, such an issue was not observed, perhaps
the underlying nature of the orientation estimation problem is
less sensitive to the initial guess. This is an interesting aspect
of our approach which will be studied as part of future work.
Another avenue for future work is replacing the maximum
likelihood orientation estimator with MOLE2D [8] which
may enhance reliability under adversarial noise regimes.
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APPENDIX A
RELATIVE MEASUREMENTS AND ROTATIONS IN 2D

Parameterizing the Direction Cosine Matrix: Let the rotation from pose x

p

to
x

q

be �✓. The DCM C
qp

for the relative rotation �✓ between x

p

and x

q

is,

C
qp

=


cos(�✓) �sin(�✓)
sin(�✓) cos(�✓)

�
. (17)

Thus in planar scenarios the matrix C
qp

is parameterized by the 2-vector c
qp

=
[cos(�✓), sin(�✓)]T .

Relative Feature Measurements-based Constraints on Orientation: Let a robot
make observations to two landmarks l

i

and l

j

from poses x
p

and x

q

as shown in Fig.
2(b). Observing this pair of landmarks from both poses forms a relative orientation
constraint C

qp

between x

p

and x

q

. Let ldij

p

and ldij

q

be the relative feature
measurements made from x

p

and x

q

respectively, then we have the following relation
ldij

p

= C
qp

ldij

q

. Using Eq. 17 in this relation and rearranging, we have the following
constraint on the relative orientation parameters,
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cos(�✓)
sin(�✓)

�
. (18)

Projection onto SO(2) Manifold: As discussed in Section IV-B1, solving Eq. 6
or Eq. 4 does not provide an orthogonal rotation as the solution. Thus the linear least
squares solution ĉ is projected back on the SO2 manifold by normalization

ĉ
normalized

= ⌘(ĉ) =
ĉ

||ĉ||
. (19)

Followed by computing the Jacobian

r̄⌘ =
1

q
c

2
1 + c

2
2


c

2
2 �c2c1

�c2c1 c

2
1

�
, (20)

and then transforming the covariance given by the linear problem as
⌃c

normalized

= r̄⌘⌃cr̄T⌘. We drop the normalized subscript for readability.
From the projected DCM parameters we can compute the rotation angle

�✓̂ = tan

�1(
c2

c1
). (21)
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