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Abstract. This paper presents a method for motion planning under un-
certainty to resolve situations where ambiguous data associations result
in a multimodal hypothesis on the robot state. Simultaneous localization
and planning for a lost (or kidnapped) robot requires that given little to
no a priori pose information, a planner should generate actions such that
future observations allow the localization algorithm to recover the cor-
rect pose of a mobile robot with respect to a global reference frame. We
present a Receding Horizon approach, to plan actions that sequentially
disambiguate a multimodal belief to achieve tight localization on the
correct pose in finite time. In our method, disambiguation is achieved
through active data associations by picking target states in the map
which allow distinctive information to be observed for each belief mode
and creating local feedback controllers to visit the targets. Experimental
results are presented for a kidnapped physical ground robot operating in
an artificial maze-like environment.

1 Introduction

In practical mobile robot motion planning problems, situations may arise where
data association between what is observed and the robot’s map leads to a mul-
timodal hypothesis on the state, for example a kidnapped robot with no a priori
information or a mobile robot operating in a symmetric environment (see Fig.
1). Figure 1 depicts a problem wherein belief (the probability distribution over
all possible robot states) modes are widely separated in an environment with
symmetry. In such cases if a robot begins with an equal likelihood on all hypoth-
esis, it is difficult to ascertain the true hypothesis as local sensing may result in
identical information for all belief modes. Thus in practice a robot often has to
seek information that helps to disambiguate its belief.

Simply relying on randomized actions to correctly recover robot pose is known
to be unreliable and inefficient in practice [1]. Further, existing methods to dis-
ambiguate multimodal hypothesis [1, 10, 21] rely on heuristics-based strategies
(e.g., picking random targets, wall following etc.) to seek disambiguating in-
formation. As opposed to [1, 10, 21], our approach disambiguates, i.e., rejects
incorrect hypothesis in a multimodal belief by actively seeking maximally dis-
ambiguating information in the map for each mode, and recovers the robot pose
with a higher certainty threshold than current state-of-the-art.
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Our Multi-Modal Motion Planner (M3P) achieves disambiguation in a mul-
timodal belief by first finding a neighboring location (referred to as target state)
for each belief mode and then creating a candidate action to guide the belief
mode to its target state such that these actions lead to information gathering
behavior. The target states are chosen such that different modes of the robot’s
belief are expected to observe distinctive information at the target locations, thus
accepting or rejecting hypotheses in the belief. We represent a multimodal hy-
pothesis with a Gaussian Mixture Model (GMM) and use an Extended Kalman
filter (EKF) based Multi-Hypothesis Tracking (MHT) approach to propagate the
belief [9–11]. The main contributions of this work can be summarized as follows;
(i) we develop a novel method for picking target states and creating candidate
trajectories for a multimodal belief, our method then chooses the optimal can-
didate such that maximum disambiguating information is observed which helps
in rejecting incorrect hypotheses, (ii) we prove that under certain realistic as-
sumptions, through a process of iterative hypothesis elimination, our method
can localize to the true robot pose, (iii) we demonstrate an application in which
a kidnapped ground robot is tasked to recover its pose.

Fig. 1: A scenario depicting a multi-hypothesis localization
problem with widely separated modes in a world with 4
rooms with identical doors. The true hypothesis is depicted
by the solid black disk, whereas others are depicted by
dashed circles. As the robot cannot distinguish between
the doors, all hypotheses are equally likely.

We motivate this work with the kidnapped robot scenario since it is one of
the hardest localization problems and measures the ability of an algorithm to
recover from global localization failures [12]. However, the method proposed is
general and can be extended to any planning situation where a multimodal belief
arises in the robot state due to ambiguous data associations (a common practical
issue in robot localization [12]). In the proceeding section, we present relevant
related work, and discuss how our approach compares with them. In Section 3
we state some preliminaries followed by the problem description. In Section 4
we present our method followed by experimental results in Section 5.

2 Related Work

Recent work in sampling-based methods for belief space planning has shown
promising results. Gaussian (unimodal) belief space planning methods such as [2–
6, 8] provide solutions that depend on the initial belief. Recent developments in
[7, 13] extend Gaussian belief space planning to multi-query settings (cases where
multiple planning requests are made sequentially) by creating a belief space
variant of a Probabilistic RoadMap (PRM) [14]. We note that the aforementioned
methods assume that data associations between observations and information
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sources (e.g., landmarks) are known and unambiguous. In contrast, we do not
assume that data associations are unambiguous or that belief is unimodal. In
our problem ambiguous data associations lead to a multimodal belief where the
modes are widely separated (see Fig. 1), this violates the underlying Gaussian
unimodal belief assumption in previously mentioned methods.

Recent work in [15, 16] extends belief space planning to non-Gaussian be-
liefs where the belief modes are not widely separated. The authors investigate
a grasping problem with a multimodal hypothesis on the gripper’s state. Their
method picks the most-likely hypothesis and a fixed number of samples from the
belief distribution, then using an RHC approach, belief space trajectories are
found that maximize the observation gap between the most-likely hypothesis and
the drawn samples, which helps to accept or reject the most-likely hypothesis.
The method in [17] builds upon the work in [15] wherein the author transposes
the non-convex trajectory planning problem in belief space to a convex prob-
lem. Among other recent works, [18] reduces the computational complexity of
planning for a non-Gaussian hypothesis but also assumes distributions without
widely separated modes. Compared to [15–18], our method is better suited to
deal with more severe cases of non-Gaussian belief space planning such as the
kidnapped robot scenario. Such scenarios may not be possible to address using
the trajectory optimization based techniques of [15–18] in their current form, due
to the difficulty of generating an initial feasible plan for the widely separated
modes in the presence of obstacles (as shown in Fig. 1).

To the extent of our knowledge, a limited number of methods approach the
problem of recovering global robot pose for a mobile robot with an initial multi-
modal hypothesis. The analysis in [19] showed that finding the optimal (shortest)
plan to re-localize a robot with multiple hypotheses in a deterministic setting (no
sensing or motion uncertainty) is NP-hard. At best a greedy localization strategy
can be developed whose plan length is upper bounded by a factor of the optimal
plan. In a symmetric environment, [20] showed that for a robot equipped with
only perfect odometery, no sequence of actions can disambiguate a pair of sym-
metric configurations. Compared to [19, 20], we do not assume perfect sensing
or actuation. In [1], the authors develop an active localization method in a grid
based scheme for a known map. Their planning method considers arbitrary tar-
gets in the robot’s local coordinate frame as atomic actions (e.g., move 1m right
and 4m forward). The optimal action is selected based on the path cost and the
expected decrease in entropy at the target. Compared to [1], our target selection
methodology (Section 4.2) is active, i.e., M3P uses the a priori map information
to select targets such that by visiting them, belief modes expect to see max-
imally disambiguating information (e.g., seeing a landmark with a distinctive
appearance can immediately confirm or reject a hypothesis, see Fig. 2). In [10],
the authors present a greedy heuristic-based planning strategy to disambiguate
a multimodal hypothesis for a kidnapped robot. The method of [21] plans safe
trajectories by picking a point in the vicinity of obstacles to disambiguate the
hypothesis. Compared to [10, 21], we present a planning approach that explicitly
reasons about the belief evolution as a result of actions in the planning stage
and picks an optimal policy from a set of candidates.
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3 Preliminaries and Problem

Let C be the configuration space and Cfree ⊂ C be the set of collision free
configurations. Let xk ∈ X, uk ∈ U, and zk ∈ Z represent the system state,
control input, and observation at time step k respectively. X, U, and Z denote
the state, control, and observation spaces respectively. It should be noted that
in our work, the state xk refers to the state of the mobile robot, i.e., we do
not model the environment and obstacles in it as part of the state. The non-
linear state evolution model f and measurement model h are denoted as xk+1 =
f(xk, uk, wk) and zk = h(xk, vk), where wk ∼ N (0, Qk) and vk ∼ N (0, Rk)
are zero-mean Gaussian process and measurement noise, respectively. The belief
bk at time tk can be represented by a Gaussian Mixture Model (GMM) as a
weighted linear summation over Gaussian densities. Let wi,k, µi,k and Σi,k be
the weight, mean vector, and covariance matrix associated to the ith Gaussian
mi,k respectively at time tk, then bk =

∑Mk

i=1 wi,kmi,k, mi,k ∼ N (µi,k, Σi,k),
where Mk is the number of modes at time tk. We state our problem as follows:

Given an a priori map, system dynamics and observation models, construct
a belief space planner G(bk) such that under the planner G, given an initial
multimodal belief b0, the sequence of future observations allow a robot to localize
about its true pose.

Note that there may be degenerate cases, where the map may not allow
actions that lead to hypothesis elimination such that the belief converges to a
unimodal distribution (e.g., in a map with two identical closed rooms, if a robot
is kidnapped and placed in either room, it cannot distinguish which room it
is in). In such cases, M3P attempts to minimize the number of modes Mk (by
design), but it is not possible to pre-compute what this minimum value of Mk

is without explicit knowledge of the true hypothesis [19] in a multimodal belief.

4 Methodology

We begin by defining certain key concepts used in the M3P planner.

Uniqueness Graph: A graph Ug, whose nodes are states sampled from the
collision free space Cfree and whose edges relate the similarity of information
observed at the sampled locations.

Target State: A target state vtti ∈ Ug for mode mi is a node of the uniqueness
graph which belongs to some neighborhood of radius R of the mode’s mean µi
such that if each mode were to visit its target, the observations at the target
would lead to disambiguation in the belief.

Candidate Policy : A candidate policy πi for mode mi is a local feedback
controller that guides the mode to its target vtti .

The M3P methodology has two phases, an offline phase in which we generate
Ug and an online phase in which we use the offline computations and plan in a
receding horizon manner to disambiguate the belief.
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(a) Candidate A leads to negative in-
formation (see Sec. 17) for the mode
in lower left corner. It expects to see
the distinctive landmark which robot
doesn’t observe, and is thus rejected.

(b) Candidate B leads the true hypoth-
esis to be confirmed as the robot sees
the distinctive landmark.

Fig. 2: Extending the example in Fig. 1, we depict how M3P creates candidate
trajectories and picks the optimal one. For clarity we show only two candidates
A & B and the effect of their execution. Candidate B results in complete disam-
biguation and is clearly a better choice.

4.1 Computing the Uniqueness Graph: Offline Phase

The uniqueness graph Ug is constructed by uniformly sampling the configuration
space and adding these samples as nodes of Ug. Once a node is added, we simulate
the observation for the state represented by that node. Let vα be one such node
and zvα be the observation if the robot were to be in state vα. We add an edge
Eαβ (undirected) between two nodes vα and vβ if the simulated observations
at both nodes are similar. Further, the edges are weighted and the weight is
dependent on the similarity in information observed, i.e., for edge Eαβ the weight
ωαβ = τ(zvα , zvβ ) where τ : Z×Z→ R computes a measure of similarity between
two observations. Note that the form of τ is general and can be changed to suit
the problem domain (perception model). Figure 3 explains this concept visually
for a landmark based observation model, where each landmark has some discrete
signature (identifier) that a robot can detect. In Fig. 3 state vα observes zvα with
signatures szvα = {s1, s2, s3}, i.e., the landmarks with signature s1, s2 and s3

and at vβ observes szvβ = {s1, s2, s4}, the edge weight ωαβ for edge Eαβ is
ωαβ = τ(zvα , zvβ ) = |szvα ∩ szvβ | = |{s1, s2}| = 2. A higher edge weight signifies
that the states represented by the vertices of that edge are more likely to observe
similar information. The lack of an edge between two nodes means that if a robot
were to make an observation at those two states, it would see distinctly different
information.

The complexity for the construction of Ug is O(n2) (where n is the number
of samples) as each sample (node) is checked with every other for information
overlap. Due to its random nature, sampling may often occur in regions of low
information density (e.g., regions where there are few or no landmarks). One can
often circumvent this issue by increasing the number of samples. As Ug is com-
puted offline, the online performance is not significantly affected. Recent work
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in [22] suggests a localization aware sampling strategy which may be explored
in future work.

Fig. 3: Simple example of a uniquness graph
with 3 nodes {vα, vβ , vγ} and 2 edges
{Eαβ , Eβγ}. The nodes vα and vγ do not see
any similar landmark hence there is no edge
between them. Here τ(zvi , zvj ) = |szvi ∩ szvj |
for i, j ∈ {α, β, γ}.

4.2 RHC based Planning: Online Phase

In a multimodal scenario, we claim that the best action to take is one that guides
a robot without collision through a path that results in information gain such
that a disambiguation occurs (one or more hypotheses are rejected, see Fig. 2).
Algorithm 1 describes the online planning process. In step 3, the planner picks
target states for each belief mode such that visiting a target can either prove
or disprove the hypothesis. In step 4, the planner generates a set of candidate
policies to drive each mode to its target. In step 5, the expected information
gain for each policy is computed and we pick the best one, and in step 7, the
multimodal belief is propagated according to the action and observations. We
proceed to describe steps 3, 4, 5 and 7 of Algorithm 1 below.

Algorithm 1: M3P: MultiModal Motion Planner

1 Input: b
2 while b 6= N (µ,Σ) do
3 {vtt} ← Pick target states for belief modes (see Alg. 2);
4 Π ← Generate candidate policies to connect each mode to its target;
5 π∗ ← Pick optimal policy from Π;
6 forall the u ∈ π∗ do
7 b← Apply action u and update belief (see Alg. 3 for weight update

calculation);
8 if Change in number of modes or Expect a belief mode to violate

constraints then
9 break;

10 return b;

Picking the target state for a mode Algorithm 2 describes in detail the
steps involved to pick a target state for a belief mode. Let us pick a mode
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mi,k ∼ N (µi,k, Σi,k) from the belief. To find the target vtti,k for mi,k, we first
choose the set of nodes Ni,k ∈ Ug (Section 4.1) which belong to the neighborhood
of the mean µi,k at time tk (steps 3 and 4, Alg. 2). Then, we find the target node
vtti,k ∈ Ni,k which observes information that is least similar in appearance to that
observed by nodes in the neighborhoods Nj,k of all other modes mj,k where j 6= i.
To do this, after computing Ni,k, we calculate the total weight of the outgoing
edges from every node vi,k ∈ Ni,k to nodes in all other neighborhoods Nj,k where
j 6= i (steps 7-13, Alg. 2). The node which has the smallest outgoing edge weight

(steps 14-16, Alg. 2), is the target candidate vtti,k for mi,k as the observation zv
tt
i,k

would be least similar to the information observed in the neighborhood of all
other modes mj where j 6= i.

Algorithm 2: Finding the target for i-th mode

1 Input: bk, i , Ug
2 Output: vtti,k
3 forall the l ∈ [1,Mk] do
4 Nl,k ← Find neighborhood nodes for µl,k in Ug;

5 minWeight← Arbitrarily large value;
6 vtti,k ← −1;
7 forall the v ∈ Ni,k do
8 w ← 0;
9 for Nj,k ∈ {N1,k, . . . , NMk,k} \Ni,k do

10 forall the e ∈ Edges connected to v do
11 forall the p ∈ Nj,k do
12 if p is a target of edge e then
13 w ← w + edgeWeight(e);

14 if w < minWeight then
15 minWeight← w;
16 vtti,k ← v;

17 return vtti,k;

Generating candidate policies for belief modes Once the targets corre-
sponding to each mode have been picked, we need to find the control action
that can take a mode from its current state to the target state. We generate the
candidate trajectory that takes each mode to its target using the RRT* planner
[23]. Once an open loop trajectory is computed, we generate a local policy πi
(feedback controller) for the i-th mode, which drives the i-th mode along this
trajectory. Let Π be the set of all such policies for the different modes.

Picking the Optimal Policy After generating the set Π of candidate policies,
we evaluate the expected information gain ∆Ii for each policy πi and pick the
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optimal policy π∗ that maximizes this information gain. We model this infor-
mation gain as the discrete change in the number of modes. To compute the
expected change in the number of belief modes, we simulate the most-likely
belief trajectory, i.e., approximating noisy observations and actions with their
most-likely values [8, 24–26]. The steps to calculate the expected information
gain for a candidate policy πi ∈ Π are as follows:

1. For every belief mode mj,k ∈ bk.
(a) Assume that robot is at mj,k.
(b) Simulate πi and propagate all the modes.
(c) Compute information gain ∆Ii,mj,k for πi.

2. Compute the weighted information gain ∆Ii =
∑Mk

j=1 wj,k∆Ii,mj,k .

After computing the expected information gain for each policy, we pick the
gain maximizing policy. The computational complexity of this step isO(M3

kLmax)
(where Mk is the number of belief modes and Lmax is the maximum candidate
trajectory length). This is due to the fact that each policy is simulated for each
mode for the length of policy, where at every step of policy execution, there are
Mk filter updates. Figure 2 depicts the process of picking the optimal candidate
trajectory in a hypothetical scenario.

Belief Propagation Using GMM We first discuss our decision to use EKF
based MHT over a particle filtering approach. In practical localization problems,
a relatively small number of Gaussian hypotheses are sufficient for maintaining
the posterior over the robot state, secondly the filtering complexity grows linearly
in the number of hypotheses and finally due to the computational complexity of
picking the optimal policy (see previous section), the number of samples required
for a particle filter would make re-planning significantly harder.

Now, we proceed to describe the weight update step which determines how
likely each mode is in the belief. In a standard implementation, the weights wi,k’s
are updated based on the measurement likelihood function as

wi,k+1 = wi,ke
− 1

2D
2
i,k+1 , (1)

where Di,k+1 is the Mahalanobis distance between the sensor observation and
most-likely observation for mode mi such that

D2
i,k+1 = (zk+1 − h(µi,k+1, 0))TR−1

k (zk+1 − h(µi,k+1, 0)). (2)

The weights are normalized such that
∑Mk

i=1 wi,k+1 = 1. A known issue with EKF-
based MHT is that it is unable to process negative information [12]. Negative
information refers to the lack of information which one may expect to see and
can certainly help in disproving a hypothesis (see Fig. 2(a)). We now proceed to
describe how negative information is factored into the weight update.

Factoring Negative Information: Depending on the state of the robot, in-
dividual hypotheses and data association results, we might have several cases.
We discuss this issue in the context of a landmark based measurement model.
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At time tk+1, let nzk+1
be the number of landmarks observed by the robot

and nzpi,k+1
be the number of landmarks that we predict to see for mi where

zpi,k+1 = h(µi,k+1, 0) is the predicted observation. Then nzk+1
= nzpi,k+1

means

that the i-th mode expected to see as many landmarks as the robot observed;
nzk+1

> nzpi,k+1
implies the robot observes more landmarks than predicted for

the mode; nzk+1
< nzpi,k+1

implies the robot observes less landmarks than pre-

dicted for the mode. Also, we can have the number of data associations to be
less than the number of predicted or measured observations or both. This means
that we may not be able to make a unique association between each predicted
and observed landmark. At time tk+1, we estimate the Mahalanobis distance
Di,k+1 (Eq. 2) for mode mi between the predicted and observed landmarks that
are matched by the data association module and update weight according to Eq.
1. Then we multiply the updated weight by a factor γ, which models the effect
of duration βi,k+1 for which the robot observes different landmarks than the i-th
mode’s prediction; and the discrepancy α in the number of data associations.
When a belief mode is initialized, we set βi,0 = 0. The weight update procedure
is described in Algorithm 3. After each weight update step, we remove modes
with negligible contribution to the belief, i.e., when wi,k+1 ≤ δw where δw is user
defined.

Algorithm 3: GMM Weight Update

1 Input: wi,k, µi,k+1, βi,k, δt
2 Output: wi,k+1, βi,k+1

3 zk+1, nzk+1 ← Get sensor observations;
4 zpi,k+1, nzpi,k+1

← Get predicted observations for µi,k+1;

5 nzk+1∩z
p
i,k+1

← Do data association;

6 w′i,k+1 ← Update and normalize weight according to likelihood function;
7 γ ← 1;
8 if nzp

i,k+1
6= nzk+1 or nzp

i,k+1
6= nzk+1∩z

p
i,k+1

then

9 α← max(1 + nzk+1 − nzk+1∩z
p
i,k+1

, 1 + nzp
i,k+1

− nzk+1∩z
p
i,k+1

);

10 βi,k+1 ← βi,k + δt;

11 γ ← e−αβi,k+110
−4

;

12 else
13 βi,k+1 ← 0;

14 wi,k+1 ← w′i,k+1γ;
15 return wi,k+1, βi,k+1;

4.3 Analysis

In this section, we show that under certain assumptions on the structure of the
environment, the receding horizon planner M3P can guarantee that an initial



10 Agarwal et al.

multimodal belief is driven into a unimodal belief in finite time. We now proceed
to state our assumptions.

Assumption 1 For every mode mi, the environment allows for the existence of
some target state vtti and some homotopy class of paths through which the robot
can visit vtti if the robot is actually at mode mi.

Assumption 2 If the robot is actually at mode mi, and its associated target
state is vtti , let Br(v

tt
i ) to be a neighborhood of radius r > 0 centered at the

target vtti such that if the robot state x ∈ Br(vtti ), exteroceptive observations can
confirm that mi is the true hypothesis.

Due to the uncertain nature of the actuation and sensing process, the existence
of a path to visit a target location does not guarantee that a robot can drive
its belief along this path or that on reaching neighborhood Br(v

tt
i ), localization

uncertainty will be sufficiently low so as to make a disambiguating data associ-
ation. Let the true belief be mode mi. Let F ⊂ C \ Cfree be the set of failure
states, and let L be the finite stopping time for policy πi defined as the time at
which collision occurs or the belief mean µi reaches the neighborhood Br(v

tt
i ).

Denote Pπi(xL ∈ F |mi) as the probability that policy πi drives the underlying
state x into a collision given the initial belief is mi.

Assumption 3 Given Assumption 1, let mode mi ∼ N (µi, Σi), with ||Σi|| <
P̄ < ∞ (initial covariance is bounded) be the true hypothesis. We assume that
under the feedback policy πi, the failure probability Pπi(xL ∈ F |mi) is suffi-
ciently low such that we can drive the robot state x into the neighborhood Br(v

tt
i )

with a high probability
∫
Br(vtti ) p

πi(xL|mi,¬F )dx > 1 − δ for any δ > 0 where

pπi(xL|mi,¬F ) is the terminal pdf on the state under policy πi when the robot
does not collide.

Assumption 4 The environment (world) in which the robot operates is static.

Proposition 1. Under Assumptions 1, 2, 3 and 4, given any initial multimodal
belief b0 =

∑
i wi,0mi,0, the receding horizon planner M3P drives the belief pro-

cess into a unimodal belief bT = mT ≈ N (µT , ΣT ) in some finite time T .

Proof. Given an initial belief b0, let πi∗ , i.e., candidate policy for mode mi∗ , be
the one that results in most information gain as required by M3P. We have only
two possibilities; (i) Case 1: Mode mi∗ is the true hypothesis, or (ii) Case 2:
Mode mi∗ is not the true hypothesis. If case 1 is true, due to Assumptions 1, 2
and 3, M3P can confirm that mi∗ is the true hypothesis by visiting the target
location and rejecting all other hypotheses in the process (see Fig. 2(b)). If case
2 is true then the robot is at some other mode mj where j 6= i∗. In case 2, as
policy πi∗ is executed, two situations can arise, either (i) πi∗ is executed fully in
which case mi∗ will expect to see distinctive information at its target location
which the robot will not observe, leading to a disambiguation immediately due
to negative information (see Fig. 2(a)) or (ii) the policy πi∗ becomes unfeasible
at some point of its execution in which case we immediately know that the
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robot is not at mode i∗ since we know that the map did not change during the
execution of πi∗ (Assumption 4) and thus, there is a disambiguation whereby
mode i∗ is discarded. Thus we see that either πi∗ confirms the true hypothesis or
the number of modes is reduced by at least one. After this disambiguation, we
restart the process as before and we are assured that at least one of the modes is
going to be disambiguated and so on. Thus, it follows given that we had a finite
number of modes to start with, the belief eventually converges to a unimodal
belief. Further, since each of the disambiguation epochs takes finite time, a finite
number of such epochs also takes a finite time, thereby proving the result.

Remarks: The above result shows that the M3P algorithm will stabilize the
belief process to a unimodal belief under Assumptions 1, 2, 3 and 4. In the case
that Assumption 1 is violated we are either (i) unable to find a target which
allows the robot to observe distinctive information (e.g., trivial case of a robot
operating in a world with identical infinite corridors) or (ii) we may find such a
target but the environment geometry does not allow for any path to visit it (e.g.,
robot stuck in one of many identical rooms and the doors are closed). These vi-
olations refer to degenerate cases that rarely occur in practical motion planning
problems. Assumptions 2 and 3 can be violated when all candidate trajectories
pass through regions lacking enough information, either because the region is un-
known or featureless. In such a case the localization uncertainty on each mode
may grow so high that we cannot make data associations at the target location
to disambiguate the multimodal belief. Thus these two assumptions imply that
the known map has enough information sources (see Fig. 4). Handling the is-
sue of maps that are either unknown, partially known or sparse in information
sources is beyond the scope of this paper and presents an important direction
for future research. Assumption 4 (static world) is common in localization liter-
ature, though it may be violated in certain scenarios. In such cases, if the map
is not changing rapidly, one may use sensory observations to incorporate new
constraints into the map and trigger replanning.

5 Experimental Results

We present experimental results for two motion planning scenarios wherein the
robot is placed randomly at a location in an environment which is identical to
other locations in appearance1. Thus the initial belief is multimodal, the goal of
the experiment is to use the non-Gaussian planner M3P described in Section 4
to localize the robot pose. We first describe the system setup to motivate the
experiment followed by the results.

5.1 System Description

We used a low-cost Arduino based differential drive robot (shown in Fig. 5(a))
equipped with an Odroid U3 computer running ROS on Ubuntu 14.04 and an off-
the-shelf Logitech C-310 webcam for sensing. The onboard computer uses a wifi

1 Due to paucity of space we only present one experiment here, a supplementary video
is provided that clearly depicts every stage of both our experiments.
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(a) (b)

Fig. 4: Evolution of the true belief mode in environments with and without suf-
ficient information. (a) No landmarks present along the candidate trajectory,
leading to high uncertainty at the end. The belief mode has diverged from the
robot pose and it is no more possible to make an accurate data association for the
landmarks at the target. (b) Sufficient information along the candidate trajec-
tory leads the belief mode to be well localized at the end, allowing unambiguous
data association for the landmarks at the target.

link to communicate with the ground control station (laptop running ROS on
Ubuntu 14.04). The ground station runs the planner and image processing algo-
rithms while communicating with the robot via wifi. The kinematics of the robot
are represented by a standard unicycle motion model. The observation model is a
vision-based range bearing sensor augmented with appearance information (see
[12] Sec. 6.6.2) such that zk = h(xk, vk) = [(r1, φ1, s1)T , (r2, φ2, s2)T , . . . ] where
rl, φl, sl are the range, bearing and signature for the l-th observed landmark.
The signature is an integer value and identical landmarks have the same signa-
ture2. For this observation model, the function τ (compute information overlap
between two observations, see Sec. 4.1) is identical to that described in Fig. 3. In
the real world, landmark appearances may change due to environmental condi-
tions (e.g., lighting), perspective etc., which may adversely affect detection, such
issues require more complex perception models and map representations which
are outside the scope of this work.

5.2 Scenario

We constructed a symmetrical maze that has 8 identical rooms (R1-8) as shown
in Fig. 5(b). Augmented reality (AR) markers were placed on the walls which
act as the landmarks detected by the vision-based sensing system of the robot
[28]. When the robot sees a landmark, it can detect the range, bearing as well
as its signature. To create ambiguity in the data association, we placed multiple
AR markers with the same signature in different parts of the environment. For
example, one of the symmetries in our experiment is the inside of each room.
Each room in the maze appears identical to the robot as markers with the same
appearance are placed on each room’s walls with an identical layout. Thus, if

2 A detailed description of the motion and observation model parameters is omitted in
the interest of space, we refer the reader to our pre-print version [27] of this paper.
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(a) (b)

Fig. 5: (a) The robot exiting a room in the maze. It has an 11.5 cm wheelbase and
measures 18 cm and 15 cm in height and length respectively. (b) The environment
with 8 rooms marked R1-R8 and belief at the start of first run. Robot is placed
in room R7 (blue disk), initial sampling leads to 8 belief modes, one in each
room. The black diamonds mark the locations of augmented reality markers in
the environment. The unique landmarks are placed inside the narrow passage,
such that if the robot enters the passage from either side, it sees distinctive
information.

the robot is placed in a location with markers similar to another part of the
environment, the data associations lead the robot to believe it could be in one of
these many locations, which leads to a multimodal belief on the state. We also
place four unique markers in a narrow passage in the center of maze as marked
in Fig. 5(b). To successfully localize, the robot must visit this location in order
to converge to its true belief.

The robot is initially placed in room R7 and is not given any prior informa-
tion of its state. To estimate b0, we uniformly sample the configuration space
and set these samples as the means µi,k of the modes of the Gaussian mix-
ture components and assign identical covariance and uniform weight to each
mode. After this, the robot remains stationary and the sensory measurements
are used to update the belief state and remove the unlikely modes with weight
w ≤ δw = 0.01. This process of elimination continues until we converge to a
fixed number of modes. Figure 5(b) shows the initial belief. The robot plans
its first set of candidate actions as shown in Fig. 6(a). After the candidates are
evaluated, the policy based on mode m5 in room R5 is chosen and executed.
As the robot turns, it sees a landmark on the wall outside the room (shown
in Fig. 6(b)). This causes mode m4 to be deleted. Immediately, replanning is
triggered and a new set of candidate trajectories is created. In successive steps,
we see that first modes m3 and m5 are deleted and then after the next two
replanning steps, modes m8, m1 and m6 are deleted. We notice that the robot
does not move till only the 2 most-likely modes are remaining. The reason for
this is that seeing the marker on the outside wall has the effect of successively
lowering the weights of the unlikely modes. As the mode weights fall below the
threshold, they are deleted, which triggers the replanning condition. Once the
belief has converged to the two most-likely modes m2,m7 (as expected by the
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symmetry) a new set of candidate policies is created and the policy based on
mode m2 is chosen. This policy leads the modes out of the rooms, and towards
the narrow passage. Figure 6(c) shows both belief modes executing the policy
based on mode m2. While executing this policy, replanning is triggered as the
robot exceeds maximum horizon (60 secs) for policy execution. The final policy
drives the robot into the narrow passage and the unique landmarks are observed
(Fig. 6(d)) which leads the belief to converge to the robot pose.

(a) The planner visualization show-
ing the candidate trajectories (green).
The top right image shows the view
from the onboard camera, with the
detected marker information overlaid.
The bottom-right image shows the
top-view of the maze in which the
robot is run.

(b) The robot observes landmark ID
55 on the door of the opposite
room causing the weights of modes
m1,m3,m4,m5,m6,m8 to gradually
decrease which leads to these modes
being removed from the belief.

(c) The robot has exited the room and
is looking at the outside wall of the
narrow passage. The two modes m2

and m7 are symmetrically located in
the map, due to the information in the
map that is observed by the robot.

(d) The belief mode has converged to
the the true belief as the robot enters
the narrow passage and observes the
unique landmark (ID 39).

Fig. 6: Snapshots of first run of the experiment at different times.
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5.3 Discussion

Our approach results in a behavior which guides the robot to seek disambiguating
information. The candidate trajectories are regenerated every time a belief mode
is rejected or a constraint violation is foreseen and the time to re-plan reduces
drastically as the number of modes reduce. Thus, the first few actions are the
hardest which is to be expected as we start off with a large number of hypotheses.
Finally, the planner is able to localize the robot safely. In [1], the authors showed
that random motion is inefficient and generally incapable of localizing a robot
within reasonable time horizons especially in cases with symmetry (e.g., office
environments with long corridors and similar rooms). In [10] the authors consider
the robot localized when one of the modes gets a weight ≥ 0.8, in contrast
our approach is more conservative in that we only consider the robot localized
when a mode has weight ≥ 0.99. We can afford to be more conservative as our
localization strategy actively seeks disambiguating information using prior map
knowledge as opposed to a heuristic based strategy. While our experiment acts
as a proof of concept, there are certain phenomenon such as cases where the
belief modes split into child modes, or dynamic environments which were not
covered and will be addressed in future work.

6 Conclusion

In this work, we studied the problem of mobile robot motion planning for active
data association in order to correctly localize a robot when the initial underlying
belief is multimodal (non-Gaussian). Our main contribution in this work is a
planner M3P that generates a sequentially disambiguating policy through active
data association, which leads the belief to converge to the true hypothesis. We are
able to show in practice that the robot is able to recover from a kidnapped state
and localize in environments that present ambiguous data associations such that
the underlying belief modes are widely separated. Compared to previous works,
we take a non-heuristic approach to candidate policy generation and selection,
while remaining conservative in accepting the true hypothesis.

A current limitation may be the computational cost for the policy selection
step in large maps which lead to a high number of hypotheses. Future work will
look at reducing this cost and experiments will be extended to larger problems
(e.g., symmetric office environments), with more complex perception models and
drastic localization failures (e.g., sequential kidnappings). Finally, there may be
tasks which are feasible with a multimodal distribution on the belief. Such cases
present an interesting area for future motion planning research.
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